Author: Damon Scott
Publisher:
ISBN: 9781611633689
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0
Book Description
Well-Structured Mathematical Logic does for logic what Structured Programming did for computation: make large-scale work possible. From the work of George Boole onward, traditional logic was made to look like a form of symbolic algebra. In this work, the logic undergirding conventional mathematics resembles well-structured computer programs. A very important feature of the new system is that it structures the expression of mathematics in much the same way that people already do informally. In this way, the new system is simultaneously machine-parsable and user-friendly, just as Structured Programming is for algorithms. Unlike traditional logic, the new system works with you, not against you, as you use it to structure--and understand--the mathematics you work with on a daily basis. The book provides a complete guide to its subject matter. It presents the major results and theorems one needs to know in order to use the new system effectively. Two chapters provide tutorials for the reader in the new way that symbols move when logical calculations are performed in the well-structured system. Numerous examples and discussions are provided to illustrate the system's many results and features. Well-Structured Mathematical Logic is accessible to anyone who has at least some knowledge of traditional logic to serve as a foundation, and is of interest to all who need a system of pliant, user-friendly mathematical logic to use in their work in mathematics and computer science.
Well-structured Mathematical Logic
Author: Damon Scott
Publisher:
ISBN: 9781611633689
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0
Book Description
Well-Structured Mathematical Logic does for logic what Structured Programming did for computation: make large-scale work possible. From the work of George Boole onward, traditional logic was made to look like a form of symbolic algebra. In this work, the logic undergirding conventional mathematics resembles well-structured computer programs. A very important feature of the new system is that it structures the expression of mathematics in much the same way that people already do informally. In this way, the new system is simultaneously machine-parsable and user-friendly, just as Structured Programming is for algorithms. Unlike traditional logic, the new system works with you, not against you, as you use it to structure--and understand--the mathematics you work with on a daily basis. The book provides a complete guide to its subject matter. It presents the major results and theorems one needs to know in order to use the new system effectively. Two chapters provide tutorials for the reader in the new way that symbols move when logical calculations are performed in the well-structured system. Numerous examples and discussions are provided to illustrate the system's many results and features. Well-Structured Mathematical Logic is accessible to anyone who has at least some knowledge of traditional logic to serve as a foundation, and is of interest to all who need a system of pliant, user-friendly mathematical logic to use in their work in mathematics and computer science.
Publisher:
ISBN: 9781611633689
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0
Book Description
Well-Structured Mathematical Logic does for logic what Structured Programming did for computation: make large-scale work possible. From the work of George Boole onward, traditional logic was made to look like a form of symbolic algebra. In this work, the logic undergirding conventional mathematics resembles well-structured computer programs. A very important feature of the new system is that it structures the expression of mathematics in much the same way that people already do informally. In this way, the new system is simultaneously machine-parsable and user-friendly, just as Structured Programming is for algorithms. Unlike traditional logic, the new system works with you, not against you, as you use it to structure--and understand--the mathematics you work with on a daily basis. The book provides a complete guide to its subject matter. It presents the major results and theorems one needs to know in order to use the new system effectively. Two chapters provide tutorials for the reader in the new way that symbols move when logical calculations are performed in the well-structured system. Numerous examples and discussions are provided to illustrate the system's many results and features. Well-Structured Mathematical Logic is accessible to anyone who has at least some knowledge of traditional logic to serve as a foundation, and is of interest to all who need a system of pliant, user-friendly mathematical logic to use in their work in mathematics and computer science.
An Introduction to Mathematical Logic
Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
A Concise Introduction to Mathematical Logic
Author: Wolfgang Rautenberg
Publisher: Springer
ISBN: 1441912215
Category : Mathematics
Languages : en
Pages : 337
Book Description
Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.
Publisher: Springer
ISBN: 1441912215
Category : Mathematics
Languages : en
Pages : 337
Book Description
Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.
A Mathematical Introduction to Logic
Author: Herbert B. Enderton
Publisher: Elsevier
ISBN: 0080496466
Category : Computers
Languages : en
Pages : 330
Book Description
A Mathematical Introduction to Logic
Publisher: Elsevier
ISBN: 0080496466
Category : Computers
Languages : en
Pages : 330
Book Description
A Mathematical Introduction to Logic
Introduction to Logic
Author: Patrick Suppes
Publisher: Courier Corporation
ISBN: 0486138054
Category : Mathematics
Languages : en
Pages : 340
Book Description
Part I of this coherent, well-organized text deals with formal principles of inference and definition. Part II explores elementary intuitive set theory, with separate chapters on sets, relations, and functions. Ideal for undergraduates.
Publisher: Courier Corporation
ISBN: 0486138054
Category : Mathematics
Languages : en
Pages : 340
Book Description
Part I of this coherent, well-organized text deals with formal principles of inference and definition. Part II explores elementary intuitive set theory, with separate chapters on sets, relations, and functions. Ideal for undergraduates.
A Profile of Mathematical Logic
Author: Howard DeLong
Publisher: Courier Corporation
ISBN: 0486139158
Category : Mathematics
Languages : en
Pages : 322
Book Description
This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.
Publisher: Courier Corporation
ISBN: 0486139158
Category : Mathematics
Languages : en
Pages : 322
Book Description
This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.
Mathematical Logic
Author: H.-D. Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 1475723555
Category : Mathematics
Languages : en
Pages : 290
Book Description
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
Publisher: Springer Science & Business Media
ISBN: 1475723555
Category : Mathematics
Languages : en
Pages : 290
Book Description
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
A Friendly Introduction to Mathematical Logic
Author: Christopher C. Leary
Publisher: Lulu.com
ISBN: 1942341075
Category : Computers
Languages : en
Pages : 382
Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Publisher: Lulu.com
ISBN: 1942341075
Category : Computers
Languages : en
Pages : 382
Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Introduction To Mathematical Logic (Extended Edition)
Author: Michal Walicki
Publisher: World Scientific Publishing Company
ISBN: 9814719986
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic — their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules — of a high, though often neglected, pedagogical value — aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.
Publisher: World Scientific Publishing Company
ISBN: 9814719986
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic — their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules — of a high, though often neglected, pedagogical value — aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.
Mathematical Logic
Author: Wei Li
Publisher: Springer Science & Business Media
ISBN: 3764399775
Category : Mathematics
Languages : en
Pages : 273
Book Description
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
Publisher: Springer Science & Business Media
ISBN: 3764399775
Category : Mathematics
Languages : en
Pages : 273
Book Description
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.