Well-posedness of Linear Hyperbolic Problems

Well-posedness of Linear Hyperbolic Problems PDF Author: Aleksandr Mikhaĭlovich Blokhin
Publisher: Nova Publishers
ISBN: 9781594549762
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
"This book will be useful for students and specialists of partial differential equations and the mathematical sciences because it clarifies crucial points of Kreiss' symmetrizer technique. The Kreiss technique was developed by H.O. Kreiss for initial boundary value problems for linear hyperbolic systems. This technique is important because it involves equations that are used in many of the applied sciences. The research presented in this book takes unique approaches to exploring the Kreiss technique that will add insight and new perspectives to linear hyperbolic problems"--Publ. web site.

Well-posedness of Linear Hyperbolic Problems

Well-posedness of Linear Hyperbolic Problems PDF Author: Aleksandr Mikhaĭlovich Blokhin
Publisher: Nova Publishers
ISBN: 9781594549762
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
"This book will be useful for students and specialists of partial differential equations and the mathematical sciences because it clarifies crucial points of Kreiss' symmetrizer technique. The Kreiss technique was developed by H.O. Kreiss for initial boundary value problems for linear hyperbolic systems. This technique is important because it involves equations that are used in many of the applied sciences. The research presented in this book takes unique approaches to exploring the Kreiss technique that will add insight and new perspectives to linear hyperbolic problems"--Publ. web site.

Handbook of Numerical Methods for Hyperbolic Problems

Handbook of Numerical Methods for Hyperbolic Problems PDF Author: Remi Abgrall
Publisher: Elsevier
ISBN: 044463911X
Category : Mathematics
Languages : en
Pages : 612

Get Book Here

Book Description
Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage

Well-Posedness of Parabolic Difference Equations

Well-Posedness of Parabolic Difference Equations PDF Author: A. Ashyralyev
Publisher: Birkhäuser
ISBN: 3034885180
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
A well-known and widely applied method of approximating the solutions of problems in mathematical physics is the method of difference schemes. Modern computers allow the implementation of highly accurate ones; hence, their construction and investigation for various boundary value problems in mathematical physics is generating much current interest. The present monograph is devoted to the construction of highly accurate difference schemes for parabolic boundary value problems, based on Padé approximations. The investigation is based on a new notion of positivity of difference operators in Banach spaces, which allows one to deal with difference schemes of arbitrary order of accuracy. Establishing coercivity inequalities allows one to obtain sharp, that is, two-sided estimates of convergence rates. The proofs are based on results in interpolation theory of linear operators. This monograph will be of value to professional mathematicians as well as advanced students interested in the fields of functional analysis and partial differential equations.

Hyperbolic Partial Differential Equations

Hyperbolic Partial Differential Equations PDF Author: Serge Alinhac
Publisher: Springer Science & Business Media
ISBN: 0387878238
Category : Mathematics
Languages : en
Pages : 159

Get Book Here

Book Description
This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher.

Well-posed, Ill-posed, and Intermediate Problems with Applications

Well-posed, Ill-posed, and Intermediate Problems with Applications PDF Author: Petrov Yuri P.
Publisher: Walter de Gruyter
ISBN: 3110195305
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
This book deals with one of the key problems in applied mathematics, namely the investigation into and providing for solution stability in solving equations with due allowance for inaccuracies in set initial data, parameters and coefficients of a mathematical model for an object under study, instrumental function, initial conditions, etc., and also with allowance for miscalculations, including roundoff errors. Until recently, all problems in mathematics, physics and engineering were divided into two classes: well-posed problems and ill-posed problems. The authors introduce a third class of problems: intermediate ones, which are problems that change their property of being well- or ill-posed on equivalent transformations of governing equations, and also problems that display the property of being either well- or ill-posed depending on the type of the functional space used. The book is divided into two parts: Part one deals with general properties of all three classes of mathematical, physical and engineering problems with approaches to solve them; Part two deals with several stable models for solving inverse ill-posed problems, illustrated with numerical examples.

Introduction to Quantum Graphs

Introduction to Quantum Graphs PDF Author: Gregory Berkolaiko
Publisher: American Mathematical Soc.
ISBN: 0821892118
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.

Finite Volume Methods for Hyperbolic Problems

Finite Volume Methods for Hyperbolic Problems PDF Author: Randall J. LeVeque
Publisher: Cambridge University Press
ISBN: 1139434187
Category : Mathematics
Languages : en
Pages : 582

Get Book Here

Book Description
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Well-Posed Linear Systems

Well-Posed Linear Systems PDF Author: Olof J. Staffans
Publisher: Cambridge University Press
ISBN: 0521825849
Category : Mathematics
Languages : en
Pages : 795

Get Book Here

Book Description
Publisher Description

Evolution Equations in Scales of Banach Spaces

Evolution Equations in Scales of Banach Spaces PDF Author: Oliver Caps
Publisher: Springer Science & Business Media
ISBN: 3322800393
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem. Many applications illustrate the generality of the approach. In particular, using the Fefferman-Phong inequality unifying results on parabolic and hyperbolic equations generalizing classical ones and a unified treatment of Navier-Stokes and Euler equations is described. Assuming only basic knowledge in analysis and functional analysis the book provides all mathematical tools and is aimed for students, graduates, researchers, and lecturers.