Web Document Analysis: Challenges And Opportunities

Web Document Analysis: Challenges And Opportunities PDF Author: Apostolos Antonacopoulos
Publisher: World Scientific
ISBN: 9814485160
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
This book provides the first comprehensive look at the emerging field of web document analysis. It sets the scene in this new field by combining state-of-the-art reviews of challenges and opportunities with research papers by leading researchers. Readers will find in-depth discussions on the many diverse and interdisciplinary areas within the field, including web image processing, applications of machine learning and graph theories for content extraction and web mining, adaptive web content delivery, multimedia document modeling and human interactive proofs for web security.

Web Document Analysis: Challenges And Opportunities

Web Document Analysis: Challenges And Opportunities PDF Author: Apostolos Antonacopoulos
Publisher: World Scientific
ISBN: 9814485160
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
This book provides the first comprehensive look at the emerging field of web document analysis. It sets the scene in this new field by combining state-of-the-art reviews of challenges and opportunities with research papers by leading researchers. Readers will find in-depth discussions on the many diverse and interdisciplinary areas within the field, including web image processing, applications of machine learning and graph theories for content extraction and web mining, adaptive web content delivery, multimedia document modeling and human interactive proofs for web security.

Web Document Analysis

Web Document Analysis PDF Author: Apostolos Antonacopoulos
Publisher: World Scientific
ISBN: 9789812775375
Category : Computers
Languages : en
Pages : 348

Get Book Here

Book Description
This book provides the first comprehensive look at the emerging field of web document analysis. It sets the scene in this new field by combining state-of-the-art reviews of challenges and opportunities with research papers by leading researchers. Readers will find in-depth discussions on the many diverse and interdisciplinary areas within the field, including web image processing, applications of machine learning and graph theories for content extraction and web mining, adaptive web content delivery, multimedia document modeling and human interactive proofs for web security. Contents: Content Extraction and Web Mining; Document Analysis for Adaptive Content Delivery; Table Understanding on the Web; Web Image Analysis and Retrieval; New Opportunities. Readership: Graduate students and researchers in document-analysis and web communities.

Document Analysis Systems VI

Document Analysis Systems VI PDF Author: Simone Marinai
Publisher: Springer
ISBN: 3540286403
Category : Computers
Languages : en
Pages : 575

Get Book Here

Book Description
Thisvolumecontainspapersselectedforpresentationatthe6thIAPRWorkshop on Document Analysis Systems (DAS 2004) held during September 8–10, 2004 at the University of Florence, Italy. Several papers represent the state of the art in a broad range of “traditional” topics such as layout analysis, applications to graphics recognition, and handwritten documents. Other contributions address the description of complete working systems, which is one of the strengths of this workshop. Some papers extend the application domains to other media, like the processing of Internet documents. The peculiarity of this 6th workshop was the large number of papers related to digital libraries and to the processing of historical documents, a taste which frequently requires the analysis of color documents. A total of 17 papers are associated with these topics, whereas two yearsago (in DAS 2002) only a couple of papers dealt with these problems. In our view there are three main reasons for this new wave in the DAS community. From the scienti?c point of view, several research ?elds reached a thorough knowledge of techniques and problems that can be e?ectively solved, and this expertise can now be applied to new domains. Another incentive has been provided by several research projects funded by the EC and the NSF on topics related to digital libraries.

Digital Document Processing

Digital Document Processing PDF Author: Bidyut B. Chaudhuri
Publisher: Springer Science & Business Media
ISBN: 184628726X
Category : Computers
Languages : en
Pages : 473

Get Book Here

Book Description
This book brings all the major and frontier topics in the field of document analysis together into a single volume, creating a unique reference source that will be invaluable to a large audience of researchers, lecturers and students working in this field. With chapters written by some of the most distinguished researchers active in this field, this book addresses recent advances in digital document processing research and development.

Graphics Recognition: Achievements, Challenges, and Evolution

Graphics Recognition: Achievements, Challenges, and Evolution PDF Author: Jean-Marc Ogier
Publisher: Springer
ISBN: 3642137288
Category : Computers
Languages : en
Pages : 288

Get Book Here

Book Description
This book contains refereed and improved papers presented at the 8th IAPR Workshop on Graphics Recognition (GREC 2009), held in La Rochelle, France, July 22–23, 2009. The GREC workshops provide an excellent opportunity for researchersand practitionersat all levels of experience to meet colleaguesand to share new ideas and knowledge about graphics recognition methods. Graphics recognition is a sub?eld of document image analysis that deals with graphical entities in engineering drawings, sketches, maps, architectural plans, musical scores, mathematical notation, tables, diagrams, etc. GREC 2009 continued the tradition of past workshops held in the Penn State University, USA (GREC 1995, LNCS Volume 1072, Springer Verlag, 1996); Nancy, France (GREC 1997, LNCS Volume 1389, Springer Verlag, 1998); Jaipur, India (GREC 1999, LNCS Volume 1941, Springer Verlag, 2000); Kingston, Canada (GREC 2001, LNCS Volume 2390, Springer Verlag, 2002); Barcelona, Spain (GREC 2003, LNCS Volume 3088, Springer Verlag, 2004); Hong Kong, China (GREC 2005, LNCS Volume 3926, Springer Verlag, 2006); and (GREC 2007, LNCS Volume 5046, Springer Verlag, 2008). The programof GREC 2009 was organized in a single-track 2-day workshop. It comprised several sessions dedicated to speci?c topics. For each session, there was an invited presentation describing the state of the art and stating the open questions for the session’s topic, followed by a number of short presentations thatcontributedbyproposingsolutionstosomeofthequestionsorbypresenting results ofthe speaker’swork. Eachsessionwas then concludedby a paneldisc- sion.

Decomposition Methodology for Knowledge Discovery and Data Mining

Decomposition Methodology for Knowledge Discovery and Data Mining PDF Author: Oded Z. Maimon
Publisher: World Scientific
ISBN: 9812560793
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem.The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.

Artificial Intelligence Methods In Software Testing

Artificial Intelligence Methods In Software Testing PDF Author: Mark Last
Publisher: World Scientific
ISBN: 9814482609
Category : Computers
Languages : en
Pages : 221

Get Book Here

Book Description
An inadequate infrastructure for software testing is causing major losses to the world economy. The characteristics of software quality problems are quite similar to other tasks successfully tackled by artificial intelligence techniques. The aims of this book are to present state-of-the-art applications of artificial intelligence and data mining methods to quality assurance of complex software systems, and to encourage further research in this important and challenging area.

Robust Range Image Registration

Robust Range Image Registration PDF Author: Luciano Afonso da Silva
Publisher: World Scientific
ISBN: 9812563121
Category : Computers
Languages : en
Pages : 174

Get Book Here

Book Description
This book addresses the range image registration problem for automatic 3D model construction. The focus is on obtaining highly precise alignments between different view pairs of the same object to avoid 3D model distortions; in contrast to most prior work, the view pairs may exhibit relatively little overlap and need not be prealigned.

Fuzzy Neural Network Theory And Application

Fuzzy Neural Network Theory And Application PDF Author: Puyin Liu
Publisher: World Scientific
ISBN: 9814483036
Category : Computers
Languages : en
Pages : 395

Get Book Here

Book Description
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to help the reader grasp the underlying theory. This is a valuable reference for scientists and engineers working in mathematics, computer science, control or other fields related to information processing. It can also be used as a textbook for graduate courses in applied mathematics, computer science, automatic control and electrical engineering.

Data Mining in Time Series Databases

Data Mining in Time Series Databases PDF Author: Mark Last
Publisher: World Scientific
ISBN: 9812382909
Category : Mathematics
Languages : en
Pages : 205

Get Book Here

Book Description
Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This book covers the state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the book also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed. Contents: A Survey of Recent Methods for Efficient Retrieval of Similar Time Sequences (H M Lie); Indexing of Compressed Time Series (E Fink & K Pratt); Boosting Interval-Based Literal: Variable Length and Early Classification (J J Rodriguez Diez); Segmenting Time Series: A Survey and Novel Approach (E Keogh et al.); Indexing Similar Time Series under Conditions of Noise (M Vlachos et al.); Classification of Events in Time Series of Graphs (H Bunke & M Kraetzl); Median Strings--A Review (X Jiang et al.); Change Detection in Classfication Models of Data Mining (G Zeira et al.). Readership: Graduate students, reseachers and practitioners in the fields of data mining, machine learning, databases and statistics.