Author: Michael R. Kosorok
Publisher: Springer Science & Business Media
ISBN: 0387749780
Category : Mathematics
Languages : en
Pages : 482
Book Description
Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.
Introduction to Empirical Processes and Semiparametric Inference
Author: Michael R. Kosorok
Publisher: Springer Science & Business Media
ISBN: 0387749780
Category : Mathematics
Languages : en
Pages : 482
Book Description
Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.
Publisher: Springer Science & Business Media
ISBN: 0387749780
Category : Mathematics
Languages : en
Pages : 482
Book Description
Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.
Limit Theory for Mixing Dependent Random Variables
Author: Lin Zhengyan
Publisher: Springer Science & Business Media
ISBN: 9780792342199
Category : Mathematics
Languages : en
Pages : 452
Book Description
For many practical problems, observations are not independent. In this book, limit behaviour of an important kind of dependent random variables, the so-called mixing random variables, is studied. Many profound results are given, which cover recent developments in this subject, such as basic properties of mixing variables, powerful probability and moment inequalities, weak convergence and strong convergence (approximation), limit behaviour of some statistics with a mixing sample, and many useful tools are provided. Audience: This volume will be of interest to researchers and graduate students in the field of probability and statistics, whose work involves dependent data (variables).
Publisher: Springer Science & Business Media
ISBN: 9780792342199
Category : Mathematics
Languages : en
Pages : 452
Book Description
For many practical problems, observations are not independent. In this book, limit behaviour of an important kind of dependent random variables, the so-called mixing random variables, is studied. Many profound results are given, which cover recent developments in this subject, such as basic properties of mixing variables, powerful probability and moment inequalities, weak convergence and strong convergence (approximation), limit behaviour of some statistics with a mixing sample, and many useful tools are provided. Audience: This volume will be of interest to researchers and graduate students in the field of probability and statistics, whose work involves dependent data (variables).
Asymptotic Theory of Weakly Dependent Random Processes
Author: Emmanuel Rio
Publisher: Springer
ISBN: 3662543230
Category : Mathematics
Languages : en
Pages : 211
Book Description
Ces notes sont consacrées aux inégalités et aux théorèmes limites classiques pour les suites de variables aléatoires absolument régulières ou fortement mélangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'étude des processus faiblement dépendants aux statisticiens ou aux probabilistes travaillant sur ces processus.
Publisher: Springer
ISBN: 3662543230
Category : Mathematics
Languages : en
Pages : 211
Book Description
Ces notes sont consacrées aux inégalités et aux théorèmes limites classiques pour les suites de variables aléatoires absolument régulières ou fortement mélangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'étude des processus faiblement dépendants aux statisticiens ou aux probabilistes travaillant sur ces processus.
Asymptotics for Associated Random Variables
Author: Paulo Eduardo Oliveira
Publisher: Springer Science & Business Media
ISBN: 3642255329
Category : Mathematics
Languages : en
Pages : 198
Book Description
The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting the theory in a unified way, explaining relations and implications of the results. It will present basic definitions and characterizations, followed by a collection of relevant inequalities. These are then applied to characterize almost sure and weak convergence of sequences of associated variables. It will also cover applications of positive dependence to the characterization of asymptotic results in nonparametric statistics. The book is directed towards researchers in probability and statistics, with particular emphasis on people interested in nonparametric methods. It will also be of interest to graduate students in those areas. The book could also be used as a reference on association in a course covering dependent variables and their asymptotics. As prerequisite, readers should have knowledge of basic probability on the reals and on metric spaces. Some acquaintance with the asymptotics of random functions, such us empirical processes and partial sums processes, is useful but not essential.
Publisher: Springer Science & Business Media
ISBN: 3642255329
Category : Mathematics
Languages : en
Pages : 198
Book Description
The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting the theory in a unified way, explaining relations and implications of the results. It will present basic definitions and characterizations, followed by a collection of relevant inequalities. These are then applied to characterize almost sure and weak convergence of sequences of associated variables. It will also cover applications of positive dependence to the characterization of asymptotic results in nonparametric statistics. The book is directed towards researchers in probability and statistics, with particular emphasis on people interested in nonparametric methods. It will also be of interest to graduate students in those areas. The book could also be used as a reference on association in a course covering dependent variables and their asymptotics. As prerequisite, readers should have knowledge of basic probability on the reals and on metric spaces. Some acquaintance with the asymptotics of random functions, such us empirical processes and partial sums processes, is useful but not essential.
Empirical Process Techniques for Dependent Data
Author: Herold Dehling
Publisher: Springer Science & Business Media
ISBN: 1461200997
Category : Mathematics
Languages : en
Pages : 378
Book Description
Empirical process techniques for independent data have been used for many years in statistics and probability theory. These techniques have proved very useful for studying asymptotic properties of parametric as well as non-parametric statistical procedures. Recently, the need to model the dependence structure in data sets from many different subject areas such as finance, insurance, and telecommunications has led to new developments concerning the empirical distribution function and the empirical process for dependent, mostly stationary sequences. This work gives an introduction to this new theory of empirical process techniques, which has so far been scattered in the statistical and probabilistic literature, and surveys the most recent developments in various related fields. Key features: A thorough and comprehensive introduction to the existing theory of empirical process techniques for dependent data * Accessible surveys by leading experts of the most recent developments in various related fields * Examines empirical process techniques for dependent data, useful for studying parametric and non-parametric statistical procedures * Comprehensive bibliographies * An overview of applications in various fields related to empirical processes: e.g., spectral analysis of time-series, the bootstrap for stationary sequences, extreme value theory, and the empirical process for mixing dependent observations, including the case of strong dependence. To date this book is the only comprehensive treatment of the topic in book literature. It is an ideal introductory text that will serve as a reference or resource for classroom use in the areas of statistics, time-series analysis, extreme value theory, point process theory, and applied probability theory. Contributors: P. Ango Nze, M.A. Arcones, I. Berkes, R. Dahlhaus, J. Dedecker, H.G. Dehling,
Publisher: Springer Science & Business Media
ISBN: 1461200997
Category : Mathematics
Languages : en
Pages : 378
Book Description
Empirical process techniques for independent data have been used for many years in statistics and probability theory. These techniques have proved very useful for studying asymptotic properties of parametric as well as non-parametric statistical procedures. Recently, the need to model the dependence structure in data sets from many different subject areas such as finance, insurance, and telecommunications has led to new developments concerning the empirical distribution function and the empirical process for dependent, mostly stationary sequences. This work gives an introduction to this new theory of empirical process techniques, which has so far been scattered in the statistical and probabilistic literature, and surveys the most recent developments in various related fields. Key features: A thorough and comprehensive introduction to the existing theory of empirical process techniques for dependent data * Accessible surveys by leading experts of the most recent developments in various related fields * Examines empirical process techniques for dependent data, useful for studying parametric and non-parametric statistical procedures * Comprehensive bibliographies * An overview of applications in various fields related to empirical processes: e.g., spectral analysis of time-series, the bootstrap for stationary sequences, extreme value theory, and the empirical process for mixing dependent observations, including the case of strong dependence. To date this book is the only comprehensive treatment of the topic in book literature. It is an ideal introductory text that will serve as a reference or resource for classroom use in the areas of statistics, time-series analysis, extreme value theory, point process theory, and applied probability theory. Contributors: P. Ango Nze, M.A. Arcones, I. Berkes, R. Dahlhaus, J. Dedecker, H.G. Dehling,
Functional Gaussian Approximation for Dependent Structures
Author: Florence Merlevède
Publisher: Oxford University Press
ISBN: 0192561863
Category : Mathematics
Languages : en
Pages : 496
Book Description
Functional Gaussian Approximation for Dependent Structures develops and analyses mathematical models for phenomena that evolve in time and influence each another. It provides a better understanding of the structure and asymptotic behaviour of stochastic processes. Two approaches are taken. Firstly, the authors present tools for dealing with the dependent structures used to obtain normal approximations. Secondly, they apply normal approximations to various examples. The main tools consist of inequalities for dependent sequences of random variables, leading to limit theorems, including the functional central limit theorem and functional moderate deviation principle. The results point out large classes of dependent random variables which satisfy invariance principles, making possible the statistical study of data coming from stochastic processes both with short and long memory. The dependence structures considered throughout the book include the traditional mixing structures, martingale-like structures, and weakly negatively dependent structures, which link the notion of mixing to the notions of association and negative dependence. Several applications are carefully selected to exhibit the importance of the theoretical results. They include random walks in random scenery and determinantal processes. In addition, due to their importance in analysing new data in economics, linear processes with dependent innovations will also be considered and analysed.
Publisher: Oxford University Press
ISBN: 0192561863
Category : Mathematics
Languages : en
Pages : 496
Book Description
Functional Gaussian Approximation for Dependent Structures develops and analyses mathematical models for phenomena that evolve in time and influence each another. It provides a better understanding of the structure and asymptotic behaviour of stochastic processes. Two approaches are taken. Firstly, the authors present tools for dealing with the dependent structures used to obtain normal approximations. Secondly, they apply normal approximations to various examples. The main tools consist of inequalities for dependent sequences of random variables, leading to limit theorems, including the functional central limit theorem and functional moderate deviation principle. The results point out large classes of dependent random variables which satisfy invariance principles, making possible the statistical study of data coming from stochastic processes both with short and long memory. The dependence structures considered throughout the book include the traditional mixing structures, martingale-like structures, and weakly negatively dependent structures, which link the notion of mixing to the notions of association and negative dependence. Several applications are carefully selected to exhibit the importance of the theoretical results. They include random walks in random scenery and determinantal processes. In addition, due to their importance in analysing new data in economics, linear processes with dependent innovations will also be considered and analysed.
Weak Dependence: With Examples and Applications
Author: Jérôme Dedecker
Publisher: Springer Science & Business Media
ISBN: 0387699511
Category : Mathematics
Languages : en
Pages : 326
Book Description
This book develops Doukhan/Louhichi's 1999 idea to measure asymptotic independence of a random process. The authors, who helped develop this theory, propose examples of models fitting such conditions: stable Markov chains, dynamical systems or more complicated models, nonlinear, non-Markovian, and heteroskedastic models with infinite memory. Applications are still needed to develop a method of analysis for nonlinear times series, and this book provides a strong basis for additional studies.
Publisher: Springer Science & Business Media
ISBN: 0387699511
Category : Mathematics
Languages : en
Pages : 326
Book Description
This book develops Doukhan/Louhichi's 1999 idea to measure asymptotic independence of a random process. The authors, who helped develop this theory, propose examples of models fitting such conditions: stable Markov chains, dynamical systems or more complicated models, nonlinear, non-Markovian, and heteroskedastic models with infinite memory. Applications are still needed to develop a method of analysis for nonlinear times series, and this book provides a strong basis for additional studies.
Probability Approximations and Beyond
Author: Andrew Barbour
Publisher: Springer Science & Business Media
ISBN: 1461419654
Category : Mathematics
Languages : en
Pages : 166
Book Description
In June 2010, a conference, Probability Approximations and Beyond, was held at the National University of Singapore (NUS), in honor of pioneering mathematician Louis Chen. Chen made the first of several seminal contributions to the theory and application of Stein’s method. One of his most important contributions has been to turn Stein’s concentration inequality idea into an effective tool for providing error bounds for the normal approximation in many settings, and in particular for sums of random variables exhibiting only local dependence. This conference attracted a large audience that came to pay homage to Chen and to hear presentations by colleagues who have worked with him in special ways over the past 40+ years. The papers in this volume attest to how Louis Chen’s cutting-edge ideas influenced and continue to influence such areas as molecular biology and computer science. He has developed applications of his work on Poisson approximation to problems of signal detection in computational biology. The original papers contained in this book provide historical context for Chen’s work alongside commentary on some of his major contributions by noteworthy statisticians and mathematicians working today.
Publisher: Springer Science & Business Media
ISBN: 1461419654
Category : Mathematics
Languages : en
Pages : 166
Book Description
In June 2010, a conference, Probability Approximations and Beyond, was held at the National University of Singapore (NUS), in honor of pioneering mathematician Louis Chen. Chen made the first of several seminal contributions to the theory and application of Stein’s method. One of his most important contributions has been to turn Stein’s concentration inequality idea into an effective tool for providing error bounds for the normal approximation in many settings, and in particular for sums of random variables exhibiting only local dependence. This conference attracted a large audience that came to pay homage to Chen and to hear presentations by colleagues who have worked with him in special ways over the past 40+ years. The papers in this volume attest to how Louis Chen’s cutting-edge ideas influenced and continue to influence such areas as molecular biology and computer science. He has developed applications of his work on Poisson approximation to problems of signal detection in computational biology. The original papers contained in this book provide historical context for Chen’s work alongside commentary on some of his major contributions by noteworthy statisticians and mathematicians working today.
Weighted Empirical Processes in Dynamic Nonlinear Models
Author: Hira L. Koul
Publisher: Springer Science & Business Media
ISBN: 146130055X
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book presents a unified approach for obtaining the limiting distributions of minimum distance. It discusses classes of goodness-of-t tests for fitting an error distribution in some of these models and/or fitting a regression-autoregressive function without assuming the knowledge of the error distribution. The main tool is the asymptotic equi-continuity of certain basic weighted residual empirical processes in the uniform and L2 metrics.
Publisher: Springer Science & Business Media
ISBN: 146130055X
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book presents a unified approach for obtaining the limiting distributions of minimum distance. It discusses classes of goodness-of-t tests for fitting an error distribution in some of these models and/or fitting a regression-autoregressive function without assuming the knowledge of the error distribution. The main tool is the asymptotic equi-continuity of certain basic weighted residual empirical processes in the uniform and L2 metrics.
Limit Theorems for Associated Random Fields and Related Systems
Author: Aleksandr Vadimovich Bulinskii
Publisher: World Scientific
ISBN: 981270941X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This volume is devoted to the study of asymptotic properties of wide classes of stochastic systems arising in mathematical statistics, percolation theory, statistical physics and reliability theory. Attention is paid not only to positive and negative associations introduced in the pioneering papers by Harris, Lehmann, Esary, Proschan, Walkup, Fortuin, Kasteleyn and Ginibre, but also to new and more general dependence conditions. Naturally, this scope comprises families of independent real-valued random variables. A variety of important results and examples of Markov processes, random measures, stable distributions, Ising ferromagnets, interacting particle systems, stochastic differential equations, random graphs and other models are provided. For such random systems, it is worthwhile to establish principal limit theorems of the modern probability theory (central limit theorem for random fields, weak and strong invariance principles, functional law of the iterated logarithm etc.) and discuss their applications. There are 434 items in the bibliography. The book is self-contained, provides detailed proofs, for reader's convenience some auxiliary results are included in the Appendix (e.g. the classical Hoeffding lemma, basic electric current theory etc.). Contents: Random Systems with Covariance Inequalities; Moment and Maximal Inequalities; Central Limit Theorem; Almost Sure Convergence; Invariance Principles; Law of the Iterated Logarithm; Statistical Applications; Integral Functionals. Readership: Researchers in modern probability and statistics, graduate students and academic staff of the universities.
Publisher: World Scientific
ISBN: 981270941X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This volume is devoted to the study of asymptotic properties of wide classes of stochastic systems arising in mathematical statistics, percolation theory, statistical physics and reliability theory. Attention is paid not only to positive and negative associations introduced in the pioneering papers by Harris, Lehmann, Esary, Proschan, Walkup, Fortuin, Kasteleyn and Ginibre, but also to new and more general dependence conditions. Naturally, this scope comprises families of independent real-valued random variables. A variety of important results and examples of Markov processes, random measures, stable distributions, Ising ferromagnets, interacting particle systems, stochastic differential equations, random graphs and other models are provided. For such random systems, it is worthwhile to establish principal limit theorems of the modern probability theory (central limit theorem for random fields, weak and strong invariance principles, functional law of the iterated logarithm etc.) and discuss their applications. There are 434 items in the bibliography. The book is self-contained, provides detailed proofs, for reader's convenience some auxiliary results are included in the Appendix (e.g. the classical Hoeffding lemma, basic electric current theory etc.). Contents: Random Systems with Covariance Inequalities; Moment and Maximal Inequalities; Central Limit Theorem; Almost Sure Convergence; Invariance Principles; Law of the Iterated Logarithm; Statistical Applications; Integral Functionals. Readership: Researchers in modern probability and statistics, graduate students and academic staff of the universities.