Empirical Processes with Applications to Statistics

Empirical Processes with Applications to Statistics PDF Author: Galen R. Shorack
Publisher: SIAM
ISBN: 0898719011
Category : Mathematics
Languages : en
Pages : 992

Get Book Here

Book Description
Originally published in 1986, this valuable reference provides a detailed treatment of limit theorems and inequalities for empirical processes of real-valued random variables; applications of the theory to censored data, spacings, rank statistics, quantiles, and many functionals of empirical processes, including a treatment of bootstrap methods; and a summary of inequalities that are useful for proving limit theorems. At the end of the Errata section, the authors have supplied references to solutions for 11 of the 19 Open Questions provided in the book's original edition. Audience: researchers in statistical theory, probability theory, biostatistics, econometrics, and computer science.

Empirical Processes with Applications to Statistics

Empirical Processes with Applications to Statistics PDF Author: Galen R. Shorack
Publisher: SIAM
ISBN: 0898719011
Category : Mathematics
Languages : en
Pages : 992

Get Book Here

Book Description
Originally published in 1986, this valuable reference provides a detailed treatment of limit theorems and inequalities for empirical processes of real-valued random variables; applications of the theory to censored data, spacings, rank statistics, quantiles, and many functionals of empirical processes, including a treatment of bootstrap methods; and a summary of inequalities that are useful for proving limit theorems. At the end of the Errata section, the authors have supplied references to solutions for 11 of the 19 Open Questions provided in the book's original edition. Audience: researchers in statistical theory, probability theory, biostatistics, econometrics, and computer science.

Introduction to Empirical Processes and Semiparametric Inference

Introduction to Empirical Processes and Semiparametric Inference PDF Author: Michael R. Kosorok
Publisher: Springer Science & Business Media
ISBN: 0387749780
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.

Convergence of Stochastic Processes

Convergence of Stochastic Processes PDF Author: D. Pollard
Publisher: David Pollard
ISBN: 0387909907
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
Functionals on stochastic processes; Uniform convergence of empirical measures; Convergence in distribution in euclidean spaces; Convergence in distribution in metric spaces; The uniform metric on space of cadlag functions; The skorohod metric on D [0, oo); Central limit teorems; Martingales.

Weighted Empirical Processes in Dynamic Nonlinear Models

Weighted Empirical Processes in Dynamic Nonlinear Models PDF Author: Hira L. Koul
Publisher: Springer Science & Business Media
ISBN: 9780387954769
Category : Mathematics
Languages : en
Pages : 454

Get Book Here

Book Description
This book presents a unified approach for obtaining the limiting distributions of minimum distance. It discusses classes of goodness-of-t tests for fitting an error distribution in some of these models and/or fitting a regression-autoregressive function without assuming the knowledge of the error distribution. The main tool is the asymptotic equi-continuity of certain basic weighted residual empirical processes in the uniform and L2 metrics.

Weak Convergence and Empirical Processes

Weak Convergence and Empirical Processes PDF Author: Aad van der vaart
Publisher: Springer Science & Business Media
ISBN: 1475725450
Category : Mathematics
Languages : en
Pages : 523

Get Book Here

Book Description
This book explores weak convergence theory and empirical processes and their applications to many applications in statistics. Part one reviews stochastic convergence in its various forms. Part two offers the theory of empirical processes in a form accessible to statisticians and probabilists. Part three covers a range of topics demonstrating the applicability of the theory to key questions such as measures of goodness of fit and the bootstrap.

Principles of Nonparametric Learning

Principles of Nonparametric Learning PDF Author: Laszlo Györfi
Publisher: Springer
ISBN: 3709125685
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
This volume provides a systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation, and genetic programming.

A Weak Convergence Approach to the Theory of Large Deviations

A Weak Convergence Approach to the Theory of Large Deviations PDF Author: Paul Dupuis
Publisher: John Wiley & Sons
ISBN: 1118165896
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems. Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.

Empirical Processes

Empirical Processes PDF Author: David Pollard
Publisher: IMS
ISBN: 9780940600164
Category : Distribution (Probability theory).
Languages : en
Pages : 100

Get Book Here

Book Description


Weak Convergence of Stochastic Processes

Weak Convergence of Stochastic Processes PDF Author: Vidyadhar Mandrekar
Publisher: de Gruyter
ISBN: 9783110475425
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The purpose of this book is to present results on the subject of weak convergence to study invariance principles in statistical applications. Different techniques, formerly only available in a broad range of literature, are for the first time presen

Weak Convergence and Empirical Processes

Weak Convergence and Empirical Processes PDF Author: A. W. van der Vaart
Publisher: Springer Nature
ISBN: 3031290402
Category : Mathematics
Languages : en
Pages : 693

Get Book Here

Book Description
This book provides an account of weak convergence theory, empirical processes, and their application to a wide variety of problems in statistics. The first part of the book presents a thorough treatment of stochastic convergence in its various forms. Part 2 brings together the theory of empirical processes in a form accessible to statisticians and probabilists. In Part 3, the authors cover a range of applications in statistics including rates of convergence of estimators; limit theorems for M− and Z−estimators; the bootstrap; the functional delta-method and semiparametric estimation. Most of the chapters conclude with “problems and complements.” Some of these are exercises to help the reader’s understanding of the material, whereas others are intended to supplement the text. This second edition includes many of the new developments in the field since publication of the first edition in 1996: Glivenko-Cantelli preservation theorems; new bounds on expectations of suprema of empirical processes; new bounds on covering numbers for various function classes; generic chaining; definitive versions of concentration bounds; and new applications in statistics including penalized M-estimation, the lasso, classification, and support vector machines. The approximately 200 additional pages also round out classical subjects, including chapters on weak convergence in Skorokhod space, on stable convergence, and on processes based on pseudo-observations.