Author: S. Gopalakrishnan
Publisher: CRC Press
ISBN: 1439804621
Category : Science
Languages : en
Pages : 299
Book Description
Employs a Step-by-Step Modular Approach to Structural ModelingConsidering that wavelet transforms have also proved useful in the solution and analysis of engineering mechanics problems, up to now there has been no sufficiently comprehensive text on this use. Wavelet Methods for Dynamical Problems: With Application to Metallic, Composite and Nano-co
Wavelet Methods for Dynamical Problems
Author: S. Gopalakrishnan
Publisher: CRC Press
ISBN: 1439804621
Category : Science
Languages : en
Pages : 299
Book Description
Employs a Step-by-Step Modular Approach to Structural ModelingConsidering that wavelet transforms have also proved useful in the solution and analysis of engineering mechanics problems, up to now there has been no sufficiently comprehensive text on this use. Wavelet Methods for Dynamical Problems: With Application to Metallic, Composite and Nano-co
Publisher: CRC Press
ISBN: 1439804621
Category : Science
Languages : en
Pages : 299
Book Description
Employs a Step-by-Step Modular Approach to Structural ModelingConsidering that wavelet transforms have also proved useful in the solution and analysis of engineering mechanics problems, up to now there has been no sufficiently comprehensive text on this use. Wavelet Methods for Dynamical Problems: With Application to Metallic, Composite and Nano-co
Mathematical Theory of Subdivision
Author: Sandeep Kumar
Publisher: CRC Press
ISBN: 1351685449
Category : Mathematics
Languages : en
Pages : 247
Book Description
This book provides good coverage of the powerful numerical techniques namely, finite element and wavelets, for the solution of partial differential equation to the scientists and engineers with a modest mathematical background. The objective of the book is to provide the necessary mathematical foundation for the advanced level applications of these numerical techniques. The book begins with the description of the steps involved in finite element and wavelets-Galerkin methods. The knowledge of Hilbert and Sobolev spaces is needed to understand the theory of finite element and wavelet-based methods. Therefore, an overview of essential content such as vector spaces, norm, inner product, linear operators, spectral theory, dual space, and distribution theory, etc. with relevant theorems are presented in a coherent and accessible manner. For the graduate students and researchers with diverse educational background, the authors have focused on the applications of numerical techniques which are developed in the last few decades. This includes the wavelet-Galerkin method, lifting scheme, and error estimation technique, etc. Features: • Computer programs in Mathematica/Matlab are incorporated for easy understanding of wavelets. • Presents a range of workout examples for better comprehension of spaces and operators. • Algorithms are presented to facilitate computer programming. • Contains the error estimation techniques necessary for adaptive finite element method. This book is structured to transform in step by step manner the students without any knowledge of finite element, wavelet and functional analysis to the students of strong theoretical understanding who will be ready to take many challenging research problems in this area.
Publisher: CRC Press
ISBN: 1351685449
Category : Mathematics
Languages : en
Pages : 247
Book Description
This book provides good coverage of the powerful numerical techniques namely, finite element and wavelets, for the solution of partial differential equation to the scientists and engineers with a modest mathematical background. The objective of the book is to provide the necessary mathematical foundation for the advanced level applications of these numerical techniques. The book begins with the description of the steps involved in finite element and wavelets-Galerkin methods. The knowledge of Hilbert and Sobolev spaces is needed to understand the theory of finite element and wavelet-based methods. Therefore, an overview of essential content such as vector spaces, norm, inner product, linear operators, spectral theory, dual space, and distribution theory, etc. with relevant theorems are presented in a coherent and accessible manner. For the graduate students and researchers with diverse educational background, the authors have focused on the applications of numerical techniques which are developed in the last few decades. This includes the wavelet-Galerkin method, lifting scheme, and error estimation technique, etc. Features: • Computer programs in Mathematica/Matlab are incorporated for easy understanding of wavelets. • Presents a range of workout examples for better comprehension of spaces and operators. • Algorithms are presented to facilitate computer programming. • Contains the error estimation techniques necessary for adaptive finite element method. This book is structured to transform in step by step manner the students without any knowledge of finite element, wavelet and functional analysis to the students of strong theoretical understanding who will be ready to take many challenging research problems in this area.
Ten Lectures on Wavelets
Author: Ingrid Daubechies
Publisher: SIAM
ISBN: 9781611970104
Category : Science
Languages : en
Pages : 357
Book Description
Wavelets are a mathematical development that may revolutionize the world of information storage and retrieval according to many experts. They are a fairly simple mathematical tool now being applied to the compression of data--such as fingerprints, weather satellite photographs, and medical x-rays--that were previously thought to be impossible to condense without losing crucial details. This monograph contains 10 lectures presented by Dr. Daubechies as the principal speaker at the 1990 CBMS-NSF Conference on Wavelets and Applications. The author has worked on several aspects of the wavelet transform and has developed a collection of wavelets that are remarkably efficient.
Publisher: SIAM
ISBN: 9781611970104
Category : Science
Languages : en
Pages : 357
Book Description
Wavelets are a mathematical development that may revolutionize the world of information storage and retrieval according to many experts. They are a fairly simple mathematical tool now being applied to the compression of data--such as fingerprints, weather satellite photographs, and medical x-rays--that were previously thought to be impossible to condense without losing crucial details. This monograph contains 10 lectures presented by Dr. Daubechies as the principal speaker at the 1990 CBMS-NSF Conference on Wavelets and Applications. The author has worked on several aspects of the wavelet transform and has developed a collection of wavelets that are remarkably efficient.
Haar Wavelets
Author: Ülo Lepik
Publisher: Springer Science & Business Media
ISBN: 3319042955
Category : Technology & Engineering
Languages : en
Pages : 209
Book Description
This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.
Publisher: Springer Science & Business Media
ISBN: 3319042955
Category : Technology & Engineering
Languages : en
Pages : 209
Book Description
This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.
Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint
Author: Mark K. Hinders
Publisher: Springer Nature
ISBN: 3030493954
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
This book discusses various applications of machine learning using a new approach, the dynamic wavelet fingerprint technique, to identify features for machine learning and pattern classification in time-domain signals. Whether for medical imaging or structural health monitoring, it develops analysis techniques and measurement technologies for the quantitative characterization of materials, tissues and structures by non-invasive means. Intelligent Feature Selection for Machine Learning using the Dynamic Wavelet Fingerprint begins by providing background information on machine learning and the wavelet fingerprint technique. It then progresses through six technical chapters, applying the methods discussed to particular real-world problems. Theses chapters are presented in such a way that they can be read on their own, depending on the reader’s area of interest, or read together to provide a comprehensive overview of the topic. Given its scope, the book will be of interest to practitioners, engineers and researchers seeking to leverage the latest advances in machine learning in order to develop solutions to practical problems in structural health monitoring, medical imaging, autonomous vehicles, wireless technology, and historical conservation.
Publisher: Springer Nature
ISBN: 3030493954
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
This book discusses various applications of machine learning using a new approach, the dynamic wavelet fingerprint technique, to identify features for machine learning and pattern classification in time-domain signals. Whether for medical imaging or structural health monitoring, it develops analysis techniques and measurement technologies for the quantitative characterization of materials, tissues and structures by non-invasive means. Intelligent Feature Selection for Machine Learning using the Dynamic Wavelet Fingerprint begins by providing background information on machine learning and the wavelet fingerprint technique. It then progresses through six technical chapters, applying the methods discussed to particular real-world problems. Theses chapters are presented in such a way that they can be read on their own, depending on the reader’s area of interest, or read together to provide a comprehensive overview of the topic. Given its scope, the book will be of interest to practitioners, engineers and researchers seeking to leverage the latest advances in machine learning in order to develop solutions to practical problems in structural health monitoring, medical imaging, autonomous vehicles, wireless technology, and historical conservation.
Multiscale Wavelet Methods for Partial Differential Equations
Author: Wolfgang Dahmen
Publisher: Elsevier
ISBN: 0080537146
Category : Mathematics
Languages : en
Pages : 587
Book Description
This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications
Publisher: Elsevier
ISBN: 0080537146
Category : Mathematics
Languages : en
Pages : 587
Book Description
This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications
Wavelets
Author: Jean-Michel Combes
Publisher: Springer Science & Business Media
ISBN: 3642759882
Category : Science
Languages : en
Pages : 337
Book Description
The last two subjects mentioned in the title "Wavelets, Time Frequency Methods and Phase Space" are so well established that they do not need any explanations. The first is related to them, but a short introduction is appropriate since the concept of wavelets emerged fairly recently. Roughly speaking, a wavelet decomposition is an expansion of an arbitrary function into smooth localized contributions labeled by a scale and a position pa rameter. Many of the ideas and techniques related to such expansions have existed for a long time and are widely used in mathematical analysis, theoretical physics and engineering. However, the rate of progress increased significantly when it was realized that these ideas could give rise to straightforward calculational methods applicable to different fields. The interdisciplinary structure (R.C.P. "Ondelettes") of the C.N.R.S. and help from the Societe Nationale Elf-Aquitaine greatly fostered these developments. The conference, the proceedings of which are contained in this volume, was held at the Centre National de Rencontres Mathematiques (C.N.R.M) in Marseille from December 14-18, 1987 and bought together an interdisciplinary mix of par ticipants. We hope that these proceedings will convey to the reader some of the excitement and flavor of the meeting.
Publisher: Springer Science & Business Media
ISBN: 3642759882
Category : Science
Languages : en
Pages : 337
Book Description
The last two subjects mentioned in the title "Wavelets, Time Frequency Methods and Phase Space" are so well established that they do not need any explanations. The first is related to them, but a short introduction is appropriate since the concept of wavelets emerged fairly recently. Roughly speaking, a wavelet decomposition is an expansion of an arbitrary function into smooth localized contributions labeled by a scale and a position pa rameter. Many of the ideas and techniques related to such expansions have existed for a long time and are widely used in mathematical analysis, theoretical physics and engineering. However, the rate of progress increased significantly when it was realized that these ideas could give rise to straightforward calculational methods applicable to different fields. The interdisciplinary structure (R.C.P. "Ondelettes") of the C.N.R.S. and help from the Societe Nationale Elf-Aquitaine greatly fostered these developments. The conference, the proceedings of which are contained in this volume, was held at the Centre National de Rencontres Mathematiques (C.N.R.M) in Marseille from December 14-18, 1987 and bought together an interdisciplinary mix of par ticipants. We hope that these proceedings will convey to the reader some of the excitement and flavor of the meeting.
Wavelets and Operators: Volume 1
Author: Yves Meyer
Publisher: Cambridge University Press
ISBN: 9780521458696
Category : Mathematics
Languages : en
Pages : 248
Book Description
The definite mathematical treatment of this important area, written by one of the founders of the field.
Publisher: Cambridge University Press
ISBN: 9780521458696
Category : Mathematics
Languages : en
Pages : 248
Book Description
The definite mathematical treatment of this important area, written by one of the founders of the field.
Wavelet Numerical Method and Its Applications in Nonlinear Problems
Author: You-He Zhou
Publisher: Springer Nature
ISBN: 9813366435
Category : Technology & Engineering
Languages : en
Pages : 494
Book Description
This book summarizes the basic theory of wavelets and some related algorithms in an easy-to-understand language from the perspective of an engineer rather than a mathematician. In this book, the wavelet solution schemes are systematically established and introduced for solving general linear and nonlinear initial boundary value problems in engineering, including the technique of boundary extension in approximating interval-bounded functions, the calculation method for various connection coefficients, the single-point Gaussian integration method in calculating the coefficients of wavelet expansions and unique treatments on nonlinear terms in differential equations. At the same time, this book is supplemented by a large number of numerical examples to specifically explain procedures and characteristics of the method, as well as detailed treatments for specific problems. Different from most of the current monographs focusing on the basic theory of wavelets, it focuses on the use of wavelet-based numerical methods developed by the author over the years. Even for the necessary basic theory of wavelet in engineering applications, this book is based on the author’s own understanding in plain language, instead of a relatively difficult professional mathematical description. This book is very suitable for students, researchers and technical personnel who only want to need the minimal knowledge of wavelet method to solve specific problems in engineering.
Publisher: Springer Nature
ISBN: 9813366435
Category : Technology & Engineering
Languages : en
Pages : 494
Book Description
This book summarizes the basic theory of wavelets and some related algorithms in an easy-to-understand language from the perspective of an engineer rather than a mathematician. In this book, the wavelet solution schemes are systematically established and introduced for solving general linear and nonlinear initial boundary value problems in engineering, including the technique of boundary extension in approximating interval-bounded functions, the calculation method for various connection coefficients, the single-point Gaussian integration method in calculating the coefficients of wavelet expansions and unique treatments on nonlinear terms in differential equations. At the same time, this book is supplemented by a large number of numerical examples to specifically explain procedures and characteristics of the method, as well as detailed treatments for specific problems. Different from most of the current monographs focusing on the basic theory of wavelets, it focuses on the use of wavelet-based numerical methods developed by the author over the years. Even for the necessary basic theory of wavelet in engineering applications, this book is based on the author’s own understanding in plain language, instead of a relatively difficult professional mathematical description. This book is very suitable for students, researchers and technical personnel who only want to need the minimal knowledge of wavelet method to solve specific problems in engineering.
A Wavelet Tour of Signal Processing
Author: Stephane Mallat
Publisher: Elsevier
ISBN: 0080520839
Category : Computers
Languages : en
Pages : 663
Book Description
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics
Publisher: Elsevier
ISBN: 0080520839
Category : Computers
Languages : en
Pages : 663
Book Description
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics