Author: Armand Wirgin
Publisher: Springer
ISBN: 3709124867
Category : Science
Languages : en
Pages : 312
Book Description
This book provides an up-to-date presentation of a broad range of contemporary problems in inverse scattering involving acoustic, elastic and electromagnetic waves. Descriptions will be given of traditional (but still in use and subject to on-going improvements) and more recent methods for identifying either: a) the homogenized material parameters of (spatially) unbounded or bounded heterogeneous media, or b) the detailed composition (spatial distribution of the material parameters) of unbounded or bounded heterogeneous media, or c) the location, shape, orientation and material characteristics of an object embedded in a wellcharacterized homogeneous, homogenized or heterogeneous unbounded or bounded medium, by inversion of reflected, transmitted or scattered spatiotemporal recorded waveforms resulting from the propagation of probe radiation within the medium.
Wavefield Inversion
Mathematical Foundations of Imaging, Tomography and Wavefield Inversion
Author: Anthony J. Devaney
Publisher: Cambridge University Press
ISBN: 1139510142
Category : Science
Languages : en
Pages : 537
Book Description
Inverse problems are of interest and importance across many branches of physics, mathematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave equation based models to vector wave models. By combining theory with numerous MATLAB based examples, the author promotes a complete understanding of the material and establishes a basis for real world applications. Key topics of discussion include the derivation of solutions to the inhomogeneous and homogeneous Helmholtz equations using Green function techniques; the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds; and the concept of field time reversal. Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students and researchers alike. Additional resources including MATLAB codes and solutions are available online at www.cambridge.org/9780521119740.
Publisher: Cambridge University Press
ISBN: 1139510142
Category : Science
Languages : en
Pages : 537
Book Description
Inverse problems are of interest and importance across many branches of physics, mathematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave equation based models to vector wave models. By combining theory with numerous MATLAB based examples, the author promotes a complete understanding of the material and establishes a basis for real world applications. Key topics of discussion include the derivation of solutions to the inhomogeneous and homogeneous Helmholtz equations using Green function techniques; the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds; and the concept of field time reversal. Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students and researchers alike. Additional resources including MATLAB codes and solutions are available online at www.cambridge.org/9780521119740.
Elastic Wavefield Inversion
Author: Peter Mora
Publisher:
ISBN:
Category : Elastic waves
Languages : en
Pages : 164
Book Description
Publisher:
ISBN:
Category : Elastic waves
Languages : en
Pages : 164
Book Description
Full Seismic Waveform Modelling and Inversion
Author: Andreas Fichtner
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352
Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352
Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.
Geophysical Inverse Theory and Regularization Problems
Author: Michael S. Zhdanov
Publisher: Elsevier
ISBN: 0080532500
Category : Science
Languages : en
Pages : 635
Book Description
This book presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology. The book brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. This text is the first to treat many kinds of inversion and imaging techniques in a unified mathematical manner.The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. The first part is an introduction to inversion theory. The second part contains a description of the basic methods of solution of the linear and nonlinear inverse problems using regularization. The following parts treat the application of regularization methods in gravity and magnetic, electromagnetic, and seismic inverse problems. The key connecting idea of these applied parts of the book is the analogy between the solutions of the forward and inverse problems in different geophysical methods. The book also includes chapters related to the modern technology of geophysical imaging, based on seismic and electromagnetic migration.This volume is unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on inversion theory.
Publisher: Elsevier
ISBN: 0080532500
Category : Science
Languages : en
Pages : 635
Book Description
This book presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology. The book brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. This text is the first to treat many kinds of inversion and imaging techniques in a unified mathematical manner.The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. The first part is an introduction to inversion theory. The second part contains a description of the basic methods of solution of the linear and nonlinear inverse problems using regularization. The following parts treat the application of regularization methods in gravity and magnetic, electromagnetic, and seismic inverse problems. The key connecting idea of these applied parts of the book is the analogy between the solutions of the forward and inverse problems in different geophysical methods. The book also includes chapters related to the modern technology of geophysical imaging, based on seismic and electromagnetic migration.This volume is unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on inversion theory.
Inverse Theory and Applications in Geophysics
Author: Michael S. Zhdanov
Publisher: Elsevier
ISBN: 044462712X
Category : Science
Languages : en
Pages : 731
Book Description
Geophysical Inverse Theory and Applications, Second Edition, brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. It's the first book of its kind to treat many kinds of inversion and imaging techniques in a unified mathematical manner.The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. Unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, it represents an exhaustive treatise on inversion theory.Written by one of the world's foremost experts, this work is widely recognized as the ultimate researcher's reference on geophysical inverse theory and its practical scientific applications. - Presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology—the first to treat many kinds of inversion and imaging techniques in a unified mathematical way - Provides a critical link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on geophysical inversion theory - Features more than 300 illustrations, figures, charts and graphs to underscore key concepts - Reflects the latest developments in inversion theory and applications and captures the most significant changes in the field over the past decade
Publisher: Elsevier
ISBN: 044462712X
Category : Science
Languages : en
Pages : 731
Book Description
Geophysical Inverse Theory and Applications, Second Edition, brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. It's the first book of its kind to treat many kinds of inversion and imaging techniques in a unified mathematical manner.The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. Unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, it represents an exhaustive treatise on inversion theory.Written by one of the world's foremost experts, this work is widely recognized as the ultimate researcher's reference on geophysical inverse theory and its practical scientific applications. - Presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology—the first to treat many kinds of inversion and imaging techniques in a unified mathematical way - Provides a critical link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on geophysical inversion theory - Features more than 300 illustrations, figures, charts and graphs to underscore key concepts - Reflects the latest developments in inversion theory and applications and captures the most significant changes in the field over the past decade
Seismic Inversion
Author: Gerard T. Schuster
Publisher: SEG Books
ISBN: 156080341X
Category : Science
Languages : en
Pages : 377
Book Description
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.
Publisher: SEG Books
ISBN: 156080341X
Category : Science
Languages : en
Pages : 377
Book Description
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.
The Seismic Wavefield: Volume 1, Introduction and Theoretical Development
Author: B. L. N. Kennett
Publisher: Cambridge University Press
ISBN: 9780521006637
Category : Science
Languages : en
Pages : 384
Book Description
This book provides a guide to understanding of seismograms for graduate students, researchers, professionals in academia and the petroleum industry.
Publisher: Cambridge University Press
ISBN: 9780521006637
Category : Science
Languages : en
Pages : 384
Book Description
This book provides a guide to understanding of seismograms for graduate students, researchers, professionals in academia and the petroleum industry.
Applied Mathematics, Modeling and Computer Simulation
Author: C.-H. Chen
Publisher: IOS Press
ISBN: 1643682555
Category : Computers
Languages : en
Pages : 1154
Book Description
The pervasiveness of computers in every field of science, industry and everyday life has meant that applied mathematics, particularly in relation to modeling and simulation, has become ever more important in recent years. This book presents the proceedings of the 2021 International Conference on Applied Mathematics, Modeling and Computer Simulation (AMMCS 2021), hosted in Wuhan, China, and held as a virtual event from 13 to 14 November 2021. The aim of the conference is to foster the knowledge and understanding of recent advances across the broad fields of applied mathematics, modeling and computer simulation, and it provides an annual platform for scholars and researchers to communicate important recent developments in their areas of specialization to colleagues and other scientists in related disciplines. This year more than 150 participants were able to exchange knowledge and discuss recent developments via the conference. The book contains 115 peer-reviewed papers, selected from more than 250 submissions and ranging from the theoretical and conceptual to the strongly pragmatic and all addressing industrial best practice. Topics covered include mathematical modeling and applications, engineering applications and scientific computations, and the simulation of intelligent systems. Providing an overview of recent development and with a mix of practical experiences and enlightening ideas, the book will be of interest to researchers and practitioners everywhere.
Publisher: IOS Press
ISBN: 1643682555
Category : Computers
Languages : en
Pages : 1154
Book Description
The pervasiveness of computers in every field of science, industry and everyday life has meant that applied mathematics, particularly in relation to modeling and simulation, has become ever more important in recent years. This book presents the proceedings of the 2021 International Conference on Applied Mathematics, Modeling and Computer Simulation (AMMCS 2021), hosted in Wuhan, China, and held as a virtual event from 13 to 14 November 2021. The aim of the conference is to foster the knowledge and understanding of recent advances across the broad fields of applied mathematics, modeling and computer simulation, and it provides an annual platform for scholars and researchers to communicate important recent developments in their areas of specialization to colleagues and other scientists in related disciplines. This year more than 150 participants were able to exchange knowledge and discuss recent developments via the conference. The book contains 115 peer-reviewed papers, selected from more than 250 submissions and ranging from the theoretical and conceptual to the strongly pragmatic and all addressing industrial best practice. Topics covered include mathematical modeling and applications, engineering applications and scientific computations, and the simulation of intelligent systems. Providing an overview of recent development and with a mix of practical experiences and enlightening ideas, the book will be of interest to researchers and practitioners everywhere.
3C Seismic and VSP: Converted waves and vector wavefield applications
Author: James Gaiser
Publisher: SEG Books
ISBN: 1560803355
Category : Science
Languages : en
Pages : 637
Book Description
3C seismic applications provide enhanced rock property characterization of the reservoir that can complement P-wave methods. Continued interest in converted P- to S-waves (PS-waves) and vertical seismic profiles (VSPs) has resulted in the steady development of advanced vector wavefield techniques. PS-wave images along with VSP data can be used to help P-wave interpretation of structure in gas obscured zones, of elastic and fluid properties for lithology discrimination from S-wave impedance and density inversion in unconventional reservoirs, and of fracture characterization and stress monitoring from S-wave birefringence (splitting) analysis. The book, which accompanies the 2016 SEG Distinguished Instructor Short Course, presents an overview of 3C seismic theory and practical application: from fundamentals of PS-waves and VSPs, through to acquisition and processing including interpretation techniques. The emphasis is on unique aspects of vector wavefields, anisotropy, and the important relationships that unify S-waves and P-waves. Various applications and case studies demonstrate image benefits from PS-waves, elastic properties and fluid discrimination from joint inversion of amplitude variations with offset/angle (AVO/A), and VSP methods for anisotropic velocity model building and improved reservoir imaging. The book will be of interest to geophysicists, geologists, and engineers, especially those involved with or considering the use of AVO/A inversion, fracture/stress characterization analyses, or interpretation in gas-obscured reservoirs.
Publisher: SEG Books
ISBN: 1560803355
Category : Science
Languages : en
Pages : 637
Book Description
3C seismic applications provide enhanced rock property characterization of the reservoir that can complement P-wave methods. Continued interest in converted P- to S-waves (PS-waves) and vertical seismic profiles (VSPs) has resulted in the steady development of advanced vector wavefield techniques. PS-wave images along with VSP data can be used to help P-wave interpretation of structure in gas obscured zones, of elastic and fluid properties for lithology discrimination from S-wave impedance and density inversion in unconventional reservoirs, and of fracture characterization and stress monitoring from S-wave birefringence (splitting) analysis. The book, which accompanies the 2016 SEG Distinguished Instructor Short Course, presents an overview of 3C seismic theory and practical application: from fundamentals of PS-waves and VSPs, through to acquisition and processing including interpretation techniques. The emphasis is on unique aspects of vector wavefields, anisotropy, and the important relationships that unify S-waves and P-waves. Various applications and case studies demonstrate image benefits from PS-waves, elastic properties and fluid discrimination from joint inversion of amplitude variations with offset/angle (AVO/A), and VSP methods for anisotropic velocity model building and improved reservoir imaging. The book will be of interest to geophysicists, geologists, and engineers, especially those involved with or considering the use of AVO/A inversion, fracture/stress characterization analyses, or interpretation in gas-obscured reservoirs.