Author: M. Farley
Publisher: IWA Publishing
ISBN: 1900222116
Category : Science
Languages : en
Pages : 297
Book Description
This is a best practice manual for addressing water losses in water distribution networks worldwide. Systems and methodologies are presented for improving water loss and leakage management in a range of networks, from systems with a well-developed infrastructure to those in developing countries where the network may need to be upgraded. The key feature of the manual is a diagnostic approach to develop a water loss strategy - using the appropriate tools to find the right solutions - which can be applied to any network. The methods of assessing the scale and volume of water loss are outlined, together with the procedures for setting up leakage monitoring and detection systems. As well as real losses (leakage) procedures for addressing apparent losses, by introducing regulatory and customer metering policies are explained. Suggestions are made for demand management and water conservation programmes, to complement the water loss strategy. Recommendations are made for training workshops and operation and maintenance programmes to ensure skills transfer and sustainability. The manual is illustrated throughout with case studies. Losses in Water Distribution Networks will appeal to a wide range of practitioners responsible for designing and managing a water loss strategy. These include consultants, operations managers, engineers, technicians and operational staff. It will also be a valuable reference for senior managers and decision makers, who may require an overview of the principles and procedures for controlling losses. The book will also be suitable as a source document for courses in Water Engineering, Resource Management and Environmental Management.
Losses in Water Distribution Networks
Author: M. Farley
Publisher: IWA Publishing
ISBN: 1900222116
Category : Science
Languages : en
Pages : 297
Book Description
This is a best practice manual for addressing water losses in water distribution networks worldwide. Systems and methodologies are presented for improving water loss and leakage management in a range of networks, from systems with a well-developed infrastructure to those in developing countries where the network may need to be upgraded. The key feature of the manual is a diagnostic approach to develop a water loss strategy - using the appropriate tools to find the right solutions - which can be applied to any network. The methods of assessing the scale and volume of water loss are outlined, together with the procedures for setting up leakage monitoring and detection systems. As well as real losses (leakage) procedures for addressing apparent losses, by introducing regulatory and customer metering policies are explained. Suggestions are made for demand management and water conservation programmes, to complement the water loss strategy. Recommendations are made for training workshops and operation and maintenance programmes to ensure skills transfer and sustainability. The manual is illustrated throughout with case studies. Losses in Water Distribution Networks will appeal to a wide range of practitioners responsible for designing and managing a water loss strategy. These include consultants, operations managers, engineers, technicians and operational staff. It will also be a valuable reference for senior managers and decision makers, who may require an overview of the principles and procedures for controlling losses. The book will also be suitable as a source document for courses in Water Engineering, Resource Management and Environmental Management.
Publisher: IWA Publishing
ISBN: 1900222116
Category : Science
Languages : en
Pages : 297
Book Description
This is a best practice manual for addressing water losses in water distribution networks worldwide. Systems and methodologies are presented for improving water loss and leakage management in a range of networks, from systems with a well-developed infrastructure to those in developing countries where the network may need to be upgraded. The key feature of the manual is a diagnostic approach to develop a water loss strategy - using the appropriate tools to find the right solutions - which can be applied to any network. The methods of assessing the scale and volume of water loss are outlined, together with the procedures for setting up leakage monitoring and detection systems. As well as real losses (leakage) procedures for addressing apparent losses, by introducing regulatory and customer metering policies are explained. Suggestions are made for demand management and water conservation programmes, to complement the water loss strategy. Recommendations are made for training workshops and operation and maintenance programmes to ensure skills transfer and sustainability. The manual is illustrated throughout with case studies. Losses in Water Distribution Networks will appeal to a wide range of practitioners responsible for designing and managing a water loss strategy. These include consultants, operations managers, engineers, technicians and operational staff. It will also be a valuable reference for senior managers and decision makers, who may require an overview of the principles and procedures for controlling losses. The book will also be suitable as a source document for courses in Water Engineering, Resource Management and Environmental Management.
Water Loss Assessment in Distribution Networks
Author: Taha M. Al-Washali
Publisher: CRC Press
ISBN: 1000380432
Category : Science
Languages : en
Pages : 197
Book Description
Water utilities worldwide lose 128 billion cubic meters annually, causing annual monetary losses estimated at USD 40 billion. Most of these losses occur in developing countries (74%). This calls for rethinking the challenges facing water utilities in developing countries, foremost of which is the assessment of water losses in intermittent supply networks. Water loss assessment methods were originally developed in continuous supply systems, and their application in intermittently operated networks (in developing countries) is hindered by the widespread use of household water tanks and unauthorised consumption. This study provides an extensive review of existing methods and (software) tools for water loss assessment. In addition, several new methods were developed, which offer improved water loss assessment in intermittent supply. As the volume of water loss varies monthly and annually according to the amount of supplied water, this study proposes procedures to normalise the volume of water loss in order to enable water utilities to monitor and benchmark their performance on water loss management. The study also developed a novel method of estimating apparent losses using routine data of WWTP inflows, enabling future real-time monitoring of losses in networks. Different methods have also been suggested to estimate the unauthorised consumption in networks. This study found that minimum night flow analysis can still be applied in intermittent supply if an area of the network is supplied for several days. Furthermore, this study concluded that water meter performance is enhanced in intermittent supply conditions. However, continuous supply in the presence of float-valves significantly reduces the accuracy of water meters. Finally, this study provides guidance and highlights several knowledge gaps in order to improve the accuracy of water loss assessment in intermittent supply. Accurate assessment of water loss is a prerequisite for reliable leakage modelling and minimisation as well as planning for, and monitoring of water loss management in distribution networks.
Publisher: CRC Press
ISBN: 1000380432
Category : Science
Languages : en
Pages : 197
Book Description
Water utilities worldwide lose 128 billion cubic meters annually, causing annual monetary losses estimated at USD 40 billion. Most of these losses occur in developing countries (74%). This calls for rethinking the challenges facing water utilities in developing countries, foremost of which is the assessment of water losses in intermittent supply networks. Water loss assessment methods were originally developed in continuous supply systems, and their application in intermittently operated networks (in developing countries) is hindered by the widespread use of household water tanks and unauthorised consumption. This study provides an extensive review of existing methods and (software) tools for water loss assessment. In addition, several new methods were developed, which offer improved water loss assessment in intermittent supply. As the volume of water loss varies monthly and annually according to the amount of supplied water, this study proposes procedures to normalise the volume of water loss in order to enable water utilities to monitor and benchmark their performance on water loss management. The study also developed a novel method of estimating apparent losses using routine data of WWTP inflows, enabling future real-time monitoring of losses in networks. Different methods have also been suggested to estimate the unauthorised consumption in networks. This study found that minimum night flow analysis can still be applied in intermittent supply if an area of the network is supplied for several days. Furthermore, this study concluded that water meter performance is enhanced in intermittent supply conditions. However, continuous supply in the presence of float-valves significantly reduces the accuracy of water meters. Finally, this study provides guidance and highlights several knowledge gaps in order to improve the accuracy of water loss assessment in intermittent supply. Accurate assessment of water loss is a prerequisite for reliable leakage modelling and minimisation as well as planning for, and monitoring of water loss management in distribution networks.
Water Loss Assessment in Distribution Networks
Author: Taha M. Al-Washali
Publisher: CRC Press
ISBN: 1000380386
Category : Science
Languages : en
Pages : 270
Book Description
Water utilities worldwide lose 128 billion cubic meters annually, causing annual monetary losses estimated at USD 40 billion. Most of these losses occur in developing countries (74%). This calls for rethinking the challenges facing water utilities in developing countries, foremost of which is the assessment of water losses in intermittent supply networks. Water loss assessment methods were originally developed in continuous supply systems, and their application in intermittently operated networks (in developing countries) is hindered by the widespread use of household water tanks and unauthorised consumption. This study provides an extensive review of existing methods and (software) tools for water loss assessment. In addition, several new methods were developed, which offer improved water loss assessment in intermittent supply. As the volume of water loss varies monthly and annually according to the amount of supplied water, this study proposes procedures to normalise the volume of water loss in order to enable water utilities to monitor and benchmark their performance on water loss management. The study also developed a novel method of estimating apparent losses using routine data of WWTP inflows, enabling future real-time monitoring of losses in networks. Different methods have also been suggested to estimate the unauthorised consumption in networks. This study found that minimum night flow analysis can still be applied in intermittent supply if an area of the network is supplied for several days. Furthermore, this study concluded that water meter performance is enhanced in intermittent supply conditions. However, continuous supply in the presence of float-valves significantly reduces the accuracy of water meters. Finally, this study provides guidance and highlights several knowledge gaps in order to improve the accuracy of water loss assessment in intermittent supply. Accurate assessment of water loss is a prerequisite for reliable leakage modelling and minimisation as well as planning for, and monitoring of water loss management in distribution networks.
Publisher: CRC Press
ISBN: 1000380386
Category : Science
Languages : en
Pages : 270
Book Description
Water utilities worldwide lose 128 billion cubic meters annually, causing annual monetary losses estimated at USD 40 billion. Most of these losses occur in developing countries (74%). This calls for rethinking the challenges facing water utilities in developing countries, foremost of which is the assessment of water losses in intermittent supply networks. Water loss assessment methods were originally developed in continuous supply systems, and their application in intermittently operated networks (in developing countries) is hindered by the widespread use of household water tanks and unauthorised consumption. This study provides an extensive review of existing methods and (software) tools for water loss assessment. In addition, several new methods were developed, which offer improved water loss assessment in intermittent supply. As the volume of water loss varies monthly and annually according to the amount of supplied water, this study proposes procedures to normalise the volume of water loss in order to enable water utilities to monitor and benchmark their performance on water loss management. The study also developed a novel method of estimating apparent losses using routine data of WWTP inflows, enabling future real-time monitoring of losses in networks. Different methods have also been suggested to estimate the unauthorised consumption in networks. This study found that minimum night flow analysis can still be applied in intermittent supply if an area of the network is supplied for several days. Furthermore, this study concluded that water meter performance is enhanced in intermittent supply conditions. However, continuous supply in the presence of float-valves significantly reduces the accuracy of water meters. Finally, this study provides guidance and highlights several knowledge gaps in order to improve the accuracy of water loss assessment in intermittent supply. Accurate assessment of water loss is a prerequisite for reliable leakage modelling and minimisation as well as planning for, and monitoring of water loss management in distribution networks.
Performance Indicators for Water Supply Services
Author: Helena Alegre
Publisher: IWA Publishing
ISBN: 1780406320
Category : Science
Languages : en
Pages : 404
Book Description
The IWA Performance Indicator System for water services is now recognized as a worldwide reference. Since it first appearance in 2000, the system has been widely quoted, adapted and used in a large number of projects both for internal performance assessment and metric benchmarking. Water professionals have benefited from a coherent and flexible system, with precise and detailed definitions that in many cases have become a standard. The system has proven to be adaptable and it has been used in very different contexts for diverse purposes. The Performance Indicators System can be used in any organization regardless of its size, nature (public, private, etc.) or degree of complexity and development. The third edition of Performance Indicators for Water Supply Services represents a further improvement of the original manual. It contains a reviewed and consolidated version of the indicators, resulting from the real needs of water companies worldwide that were expressed during the extensive field testing of the original system. The indicators now properly cover bulk distribution and the needs of developing countries, and all definitions have been thoroughly revised. The confidence grading scheme has been simplified and the procedure to assess the results- uncertainty has been significantly enhanced. In addition to the updated contents of the original edition, a large part of the manual is now devoted to the practical application of the system. Complete with simplified step-by-step implementation procedures and case studies, the manual provides guidelines on how to adapt the IWA concepts and indicators to specific contexts and objectives. This new edition of Performance Indicators for Water Supply Services is an invaluable reference source for all those concerned with managing the performance of the water supply industry, including those in the water utilities as well as regulators, policy-makers and financial agencies.
Publisher: IWA Publishing
ISBN: 1780406320
Category : Science
Languages : en
Pages : 404
Book Description
The IWA Performance Indicator System for water services is now recognized as a worldwide reference. Since it first appearance in 2000, the system has been widely quoted, adapted and used in a large number of projects both for internal performance assessment and metric benchmarking. Water professionals have benefited from a coherent and flexible system, with precise and detailed definitions that in many cases have become a standard. The system has proven to be adaptable and it has been used in very different contexts for diverse purposes. The Performance Indicators System can be used in any organization regardless of its size, nature (public, private, etc.) or degree of complexity and development. The third edition of Performance Indicators for Water Supply Services represents a further improvement of the original manual. It contains a reviewed and consolidated version of the indicators, resulting from the real needs of water companies worldwide that were expressed during the extensive field testing of the original system. The indicators now properly cover bulk distribution and the needs of developing countries, and all definitions have been thoroughly revised. The confidence grading scheme has been simplified and the procedure to assess the results- uncertainty has been significantly enhanced. In addition to the updated contents of the original edition, a large part of the manual is now devoted to the practical application of the system. Complete with simplified step-by-step implementation procedures and case studies, the manual provides guidelines on how to adapt the IWA concepts and indicators to specific contexts and objectives. This new edition of Performance Indicators for Water Supply Services is an invaluable reference source for all those concerned with managing the performance of the water supply industry, including those in the water utilities as well as regulators, policy-makers and financial agencies.
Urban Water Distribution Networks
Author: Symeon Christodoulou
Publisher: Butterworth-Heinemann
ISBN: 0128136537
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Urban Water Distribution Networks: Assessing Systems Vulnerabilities and Risks provides a methodology for a system-wide assessment of water distribution networks (WDN) based on component analysis, network topology and, most importantly, the effects of a network's past performance on its seismic and/or non-seismic reliability. Water distribution networks engineers and system designers face multiple operational issues in delivering safe and clean potable water to their customers. - Includes vulnerability assessment methods for water distribution pipes - Discusses topological aspects and their effects on network vulnerability - Explores analytical and numerical modeling methods for finding and analyzing systems vulnerabilities in water distribution networks - Features real world case studies of networks under continuous and intermittent water supply operations
Publisher: Butterworth-Heinemann
ISBN: 0128136537
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Urban Water Distribution Networks: Assessing Systems Vulnerabilities and Risks provides a methodology for a system-wide assessment of water distribution networks (WDN) based on component analysis, network topology and, most importantly, the effects of a network's past performance on its seismic and/or non-seismic reliability. Water distribution networks engineers and system designers face multiple operational issues in delivering safe and clean potable water to their customers. - Includes vulnerability assessment methods for water distribution pipes - Discusses topological aspects and their effects on network vulnerability - Explores analytical and numerical modeling methods for finding and analyzing systems vulnerabilities in water distribution networks - Features real world case studies of networks under continuous and intermittent water supply operations
Drinking Water Distribution Systems
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309133955
Category : Science
Languages : en
Pages : 404
Book Description
Protecting and maintaining water distributions systems is crucial to ensuring high quality drinking water. Distribution systems-consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances-carry drinking water from a centralized treatment plant or well supplies to consumers' taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management challenge from both an operational and public health standpoint. Recent data on waterborne disease outbreaks suggest that distribution systems remain a source of contamination that has yet to be fully addressed. This report evaluates approaches for risk characterization and recent data, and it identifies a variety of strategies that could be considered to reduce the risks posed by water-quality deteriorating events in distribution systems. Particular attention is given to backflow events via cross connections, the potential for contamination of the distribution system during construction and repair activities, maintenance of storage facilities, and the role of premise plumbing in public health risk. The report also identifies advances in detection, monitoring and modeling, analytical methods, and research and development opportunities that will enable the water supply industry to further reduce risks associated with drinking water distribution systems.
Publisher: National Academies Press
ISBN: 0309133955
Category : Science
Languages : en
Pages : 404
Book Description
Protecting and maintaining water distributions systems is crucial to ensuring high quality drinking water. Distribution systems-consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances-carry drinking water from a centralized treatment plant or well supplies to consumers' taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management challenge from both an operational and public health standpoint. Recent data on waterborne disease outbreaks suggest that distribution systems remain a source of contamination that has yet to be fully addressed. This report evaluates approaches for risk characterization and recent data, and it identifies a variety of strategies that could be considered to reduce the risks posed by water-quality deteriorating events in distribution systems. Particular attention is given to backflow events via cross connections, the potential for contamination of the distribution system during construction and repair activities, maintenance of storage facilities, and the role of premise plumbing in public health risk. The report also identifies advances in detection, monitoring and modeling, analytical methods, and research and development opportunities that will enable the water supply industry to further reduce risks associated with drinking water distribution systems.
The Issues and Challenges of Reducing Non-Revenue Water
Author: Rudolf Frauendorfer
Publisher: Asian Development Bank
ISBN: 9290921935
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
Improving the efficiency of water utilities and reducing water losses are becoming top priorities in Asia, with its often-limited water resources and rapidly increasing urban population. This publication provides an up-to-date introduction to the subject matter, highlights the complexity of managing non-revenue water (NRW), offers guidance on NRW assessment, and recommends appropriate performance indicators. It is, to a large extent, based on the work of the Water Loss Specialist Group of the International Water Association in the last decade, and is amply complemented by the authors' practical experiences in Asia and in other countries around the world.
Publisher: Asian Development Bank
ISBN: 9290921935
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
Improving the efficiency of water utilities and reducing water losses are becoming top priorities in Asia, with its often-limited water resources and rapidly increasing urban population. This publication provides an up-to-date introduction to the subject matter, highlights the complexity of managing non-revenue water (NRW), offers guidance on NRW assessment, and recommends appropriate performance indicators. It is, to a large extent, based on the work of the Water Loss Specialist Group of the International Water Association in the last decade, and is amply complemented by the authors' practical experiences in Asia and in other countries around the world.
Leak Detection
Author: Stuart Hamilton
Publisher: IWA Publishing
ISBN: 1780404700
Category : Science
Languages : en
Pages : 106
Book Description
Ageing infrastructure and declining water resources are major concerns with a growing global population. Controlling water loss has therefore become a priority for water utilities around the world. In order to improve efficiencies, water utilities need to apply good practices in leak detection. Leak Detection: Technology and Implementation assists water utilities with the development and implementation of leak detection programs. Leak detection and repair is one of the components of controlling water loss. In addition, techniques are discussed within this book and relevant case studies are presented. This book provides useful and practical information on leakage issues.
Publisher: IWA Publishing
ISBN: 1780404700
Category : Science
Languages : en
Pages : 106
Book Description
Ageing infrastructure and declining water resources are major concerns with a growing global population. Controlling water loss has therefore become a priority for water utilities around the world. In order to improve efficiencies, water utilities need to apply good practices in leak detection. Leak Detection: Technology and Implementation assists water utilities with the development and implementation of leak detection programs. Leak detection and repair is one of the components of controlling water loss. In addition, techniques are discussed within this book and relevant case studies are presented. This book provides useful and practical information on leakage issues.
The Water Footprint Assessment Manual
Author: Maite M. Aldaya
Publisher: Routledge
ISBN: 1136538526
Category : Business & Economics
Languages : en
Pages : 224
Book Description
People use lots of water for drinking, cooking and washing, but significantly more for producing things such as food, paper and cotton clothes. The water footprint is an indicator of water use that looks at both direct and indirect water use of a consumer or producer. Indirect use refers to the 'virtual water' embedded in tradable goods and commodities, such as cereals, sugar or cotton. The water footprint of an individual, community or business is defined as the total volume of freshwater that is used to produce the goods and services consumed by the individual or community or produced by the business. This book offers a complete and up-to-date overview of the global standard on water footprint assessment as developed by the Water Footprint Network. More specifically it: o Provides a comprehensive set of methods for water footprint assessment o Shows how water footprints can be calculated for individual processes and products, as well as for consumers, nations and businesses o Contains detailed worked examples of how to calculate green, blue and grey water footprints o Describes how to assess the sustainability of the aggregated water footprint within a river basin or the water footprint of a specific product o Includes an extensive library of possible measures that can contribute to water footprint reduction
Publisher: Routledge
ISBN: 1136538526
Category : Business & Economics
Languages : en
Pages : 224
Book Description
People use lots of water for drinking, cooking and washing, but significantly more for producing things such as food, paper and cotton clothes. The water footprint is an indicator of water use that looks at both direct and indirect water use of a consumer or producer. Indirect use refers to the 'virtual water' embedded in tradable goods and commodities, such as cereals, sugar or cotton. The water footprint of an individual, community or business is defined as the total volume of freshwater that is used to produce the goods and services consumed by the individual or community or produced by the business. This book offers a complete and up-to-date overview of the global standard on water footprint assessment as developed by the Water Footprint Network. More specifically it: o Provides a comprehensive set of methods for water footprint assessment o Shows how water footprints can be calculated for individual processes and products, as well as for consumers, nations and businesses o Contains detailed worked examples of how to calculate green, blue and grey water footprints o Describes how to assess the sustainability of the aggregated water footprint within a river basin or the water footprint of a specific product o Includes an extensive library of possible measures that can contribute to water footprint reduction
Design and Construction of Smart Cities
Author: Ibrahim El Dimeery
Publisher: Springer Nature
ISBN: 3030642178
Category : Science
Languages : en
Pages : 405
Book Description
This book focuses on how to maintain environmental sustainability as one of its main principles, and it addresses how smart cities serve to diminish wastes and maintain natural resources by having clean green energy that is operated by new smart technology designs. Living in a smart city is not something of the future anymore, it is here, and it is being implemented all over the world. A smart city uses different types of electronic Internet of things (IoT) sensors to collect data and then use these data to manage assets and resources efficiently. The smart city concept integrates information and communication technology (ICT), and various physical devices connected to the IoT network to optimize the efficiency of city operations and services and achieve sustainable solutions to allow us to grow with proper management of our resources. Smart sustainable structures and infrastructures face the need of urban areas due to the growth of populations while in the same time save our environment. To achieve this, we need to revisit the conventional methods in design and construction and the conventional materials which are used now to optimize the design and provide smart solutions. In the past few years, the consumption of resources has been massive, and the waste produced from that consumption has been inconceivable. This is causing environmental degradation, which produces many environmental challenges, such as global climate change, excessive fossil fuel dependency and the growing demand for energy. As well as, discussing the challenges facing the civil engineering design and construction of smart cities components and presenting concepts and insight from experts and researchers from different civil engineering disciplines., this book explains how to construct buildings and special structures and how to manage and monitor energy.
Publisher: Springer Nature
ISBN: 3030642178
Category : Science
Languages : en
Pages : 405
Book Description
This book focuses on how to maintain environmental sustainability as one of its main principles, and it addresses how smart cities serve to diminish wastes and maintain natural resources by having clean green energy that is operated by new smart technology designs. Living in a smart city is not something of the future anymore, it is here, and it is being implemented all over the world. A smart city uses different types of electronic Internet of things (IoT) sensors to collect data and then use these data to manage assets and resources efficiently. The smart city concept integrates information and communication technology (ICT), and various physical devices connected to the IoT network to optimize the efficiency of city operations and services and achieve sustainable solutions to allow us to grow with proper management of our resources. Smart sustainable structures and infrastructures face the need of urban areas due to the growth of populations while in the same time save our environment. To achieve this, we need to revisit the conventional methods in design and construction and the conventional materials which are used now to optimize the design and provide smart solutions. In the past few years, the consumption of resources has been massive, and the waste produced from that consumption has been inconceivable. This is causing environmental degradation, which produces many environmental challenges, such as global climate change, excessive fossil fuel dependency and the growing demand for energy. As well as, discussing the challenges facing the civil engineering design and construction of smart cities components and presenting concepts and insight from experts and researchers from different civil engineering disciplines., this book explains how to construct buildings and special structures and how to manage and monitor energy.