Rotorcraft Aeromechanics

Rotorcraft Aeromechanics PDF Author: Wayne Johnson
Publisher: Cambridge University Press
ISBN: 1107355281
Category : Technology & Engineering
Languages : en
Pages : 949

Get Book Here

Book Description
A rotorcraft is a class of aircraft that uses large-diameter rotating wings to accomplish efficient vertical take-off and landing. The class encompasses helicopters of numerous configurations (single main rotor and tail rotor, tandem rotors, coaxial rotors), tilting proprotor aircraft, compound helicopters, and many other innovative configuration concepts. Aeromechanics covers much of what the rotorcraft engineer needs: performance, loads, vibration, stability, flight dynamics, and noise. These topics include many of the key performance attributes and the often-encountered problems in rotorcraft designs. This comprehensive book presents, in depth, what engineers need to know about modelling rotorcraft aeromechanics. The focus is on analysis, and calculated results are presented to illustrate analysis characteristics and rotor behaviour. The first third of the book is an introduction to rotorcraft aerodynamics, blade motion, and performance. The remainder of the book covers advanced topics in rotary wing aerodynamics and dynamics.

Rotorcraft Aeromechanics

Rotorcraft Aeromechanics PDF Author: Wayne Johnson
Publisher: Cambridge University Press
ISBN: 1107355281
Category : Technology & Engineering
Languages : en
Pages : 949

Get Book Here

Book Description
A rotorcraft is a class of aircraft that uses large-diameter rotating wings to accomplish efficient vertical take-off and landing. The class encompasses helicopters of numerous configurations (single main rotor and tail rotor, tandem rotors, coaxial rotors), tilting proprotor aircraft, compound helicopters, and many other innovative configuration concepts. Aeromechanics covers much of what the rotorcraft engineer needs: performance, loads, vibration, stability, flight dynamics, and noise. These topics include many of the key performance attributes and the often-encountered problems in rotorcraft designs. This comprehensive book presents, in depth, what engineers need to know about modelling rotorcraft aeromechanics. The focus is on analysis, and calculated results are presented to illustrate analysis characteristics and rotor behaviour. The first third of the book is an introduction to rotorcraft aerodynamics, blade motion, and performance. The remainder of the book covers advanced topics in rotary wing aerodynamics and dynamics.

Smart Helicopter Rotors

Smart Helicopter Rotors PDF Author: Ranjan Ganguli
Publisher: Springer
ISBN: 3319247689
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibration caused by dynamic stall. The exposition of ideas, materials and algorithms in this monograph is supported by extensive reporting of results from numerical simulations of smart helicopter rotors. This monograph will be a valuable source of reference for researchers and engineers with backgrounds in aerospace, mechanical and electrical engineering interested in smart materials and vibration control. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Correlation of Airloads on a Two-bladed Helicopter Rotor

Correlation of Airloads on a Two-bladed Helicopter Rotor PDF Author: Francisco J. Fernandez
Publisher:
ISBN:
Category : Rotors (Helicopters)
Languages : en
Pages : 32

Get Book Here

Book Description


Springer Handbook of Experimental Fluid Mechanics

Springer Handbook of Experimental Fluid Mechanics PDF Author: Cameron Tropea
Publisher: Springer Science & Business Media
ISBN: 3540251413
Category : Science
Languages : en
Pages : 1570

Get Book Here

Book Description
Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.

Helicopter Theory

Helicopter Theory PDF Author: Wayne Johnson
Publisher: Courier Corporation
ISBN: 0486131823
Category : Technology & Engineering
Languages : en
Pages : 1122

Get Book Here

Book Description
Monumental engineering text covers vertical flight, forward flight, performance, mathematics of rotating systems, rotary wing dynamics and aerodynamics, aeroelasticity, stability and control, stall, noise, and more. 189 illustrations. 1980 edition.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892

Get Book Here

Book Description


Rotorcraft Aeromechanics

Rotorcraft Aeromechanics PDF Author: Wayne Johnson
Publisher: Cambridge University Press
ISBN: 1107028078
Category : Mathematics
Languages : en
Pages : 949

Get Book Here

Book Description
A rotorcraft is a class of aircraft that uses large-diameter rotating wings to accomplish efficient vertical take-off and landing. The class encompasses helicopters of numerous configurations (single main rotor and tail rotor, tandem rotors, coaxial rotors), tilting proprotor aircraft, compound helicopters, and many other innovative configuration concepts. Aeromechanics covers much of what the rotorcraft engineer needs: performance, loads, vibration, stability, flight dynamics, and noise. These topics include many of the key performance attributes and the often-encountered problems in rotorcraft designs. This comprehensive book presents, in depth, what engineers need to know about modelling rotorcraft aeromechanics. The focus is on analysis, and calculated results are presented to illustrate analysis characteristics and rotor behaviour. The first third of the book is an introduction to rotorcraft aerodynamics, blade motion, and performance. The remainder of the book covers advanced topics in rotary wing aerodynamics and dynamics.

Journal of the American Helicopter Society

Journal of the American Helicopter Society PDF Author: American Helicopter Society
Publisher:
ISBN:
Category : Helicopters
Languages : en
Pages : 332

Get Book Here

Book Description


Aeronautical Engineering

Aeronautical Engineering PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 538

Get Book Here

Book Description


Special Course on Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications

Special Course on Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications PDF Author:
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 564

Get Book Here

Book Description
"This lecture series is devoted to major aspects of aerofoil design both for aeronautical and turbomachine application. These include: (1) optimisation of target pressure and velocity distribution. Both direct optimisation resulting from an inverse boundary layer calculation and an iterative optimisation of the loses are presented. (2) aerofoil design by means of inverse methods. This ranges from simple parametric definitions of two- dimensional cross sections to a detailed numerical definition of three dimensional shapes. blade or airfoil designs are normally made in two steps, and the lectures are accordingly grouped into two parts. First, optimisation of target pressure and velocity distributions are discussed taking into account the required performance and the lost mechanisms in the boundary layer. Both direct optimisation resulting from an inverse boundary layer calculation, and an iterative optimisation by minimisation of the losses are presented. It is clear from both procedures that inclusion of off-design operation is one of the greatest difficulties involved in blade or airfoil operation. The second part gives an overview of the numerous inverse blade design methods that have been developed both for turbomachinery and aeronautical applications. This ranges from simple parameter definitions of two-dimensional cross-sections to the full three-dimensional definition of wings and blade channels."--DTIC.