Vortex Driven Acoustic Flow Instability

Vortex Driven Acoustic Flow Instability PDF Author: Lutz Blätte
Publisher:
ISBN:
Category :
Languages : en
Pages : 154

Get Book Here

Book Description
Most combustion machines feature internal flows with very high energy densities. If a small fraction of the total energy contained in the flow is diverted into oscillations, large mechanical or thermal loads on the structure can be the result, which are potentially devastating if not predicted correctly. This is particularly the case for lightweight high performing devices like rockets. The problem is commonly known as "Combustion Instability". Several mechanisms have been identied in the past that link the flow field to the acoustics inside a combustion chamber and thereby drive or dampen oscillations, one of them being vortex shedding. The interaction between the highly sheared flow behind an obstacle and longitudinal acoustic oscillations inside a solid rocket booster is investigated both analytically and experimentally. The analytical approach is developed based on modeling of the second order acoustic energy. The energy model is applied to the specic flow conditions just downstream of a single baffle protruding into the flow. The mean flow profile is assumed to be of the form of a hyperbolic tangent, the unsteady acoustic velocities are assumed to be sinusoidally oscillating. Solutions for the unsteady rotational velocities and the unsteady vorticity are derived. The resulting flow field is utilized in stability calculations for a simplified two-dimensional axial-symmetric geometry. This yields to linear growth rates of the (longitudinal) oscillation modes. The growth rates are functions of the chamber geometry, the mean ow properties and the properties of the shear layer created by the flow restriction. A cold flow experiment is designed, tested and performed in order to validate the analytical findings. Flow is injected radially into a tube with acoustic closed-closed end conditions. A single baffle is installed in the tube, the axial position of the baffle is varied as well as its inner diameter. Frequency spectra of pressure oscillations are recorded. The experimental data is then compared qualitatively to the analytical growth rates. Those longitudinal Normal Modes, which feature the highest theoretical growth rates, are expected to be most prominent in the experimental data. This behavior is clearly observable.

Vortex Driven Acoustic Flow Instability

Vortex Driven Acoustic Flow Instability PDF Author: Lutz Blätte
Publisher:
ISBN:
Category :
Languages : en
Pages : 154

Get Book Here

Book Description
Most combustion machines feature internal flows with very high energy densities. If a small fraction of the total energy contained in the flow is diverted into oscillations, large mechanical or thermal loads on the structure can be the result, which are potentially devastating if not predicted correctly. This is particularly the case for lightweight high performing devices like rockets. The problem is commonly known as "Combustion Instability". Several mechanisms have been identied in the past that link the flow field to the acoustics inside a combustion chamber and thereby drive or dampen oscillations, one of them being vortex shedding. The interaction between the highly sheared flow behind an obstacle and longitudinal acoustic oscillations inside a solid rocket booster is investigated both analytically and experimentally. The analytical approach is developed based on modeling of the second order acoustic energy. The energy model is applied to the specic flow conditions just downstream of a single baffle protruding into the flow. The mean flow profile is assumed to be of the form of a hyperbolic tangent, the unsteady acoustic velocities are assumed to be sinusoidally oscillating. Solutions for the unsteady rotational velocities and the unsteady vorticity are derived. The resulting flow field is utilized in stability calculations for a simplified two-dimensional axial-symmetric geometry. This yields to linear growth rates of the (longitudinal) oscillation modes. The growth rates are functions of the chamber geometry, the mean ow properties and the properties of the shear layer created by the flow restriction. A cold flow experiment is designed, tested and performed in order to validate the analytical findings. Flow is injected radially into a tube with acoustic closed-closed end conditions. A single baffle is installed in the tube, the axial position of the baffle is varied as well as its inner diameter. Frequency spectra of pressure oscillations are recorded. The experimental data is then compared qualitatively to the analytical growth rates. Those longitudinal Normal Modes, which feature the highest theoretical growth rates, are expected to be most prominent in the experimental data. This behavior is clearly observable.

Theory of Vortex Sound

Theory of Vortex Sound PDF Author: M. S. Howe
Publisher: Cambridge University Press
ISBN: 9780521012232
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
Table of contents

Thermoacoustic Combustion Instability Control

Thermoacoustic Combustion Instability Control PDF Author: Dan Zhao
Publisher: Academic Press
ISBN: 0323899188
Category : Technology & Engineering
Languages : en
Pages : 1145

Get Book Here

Book Description
Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms

Thermoacoustic Instability

Thermoacoustic Instability PDF Author: R. I. Sujith
Publisher: Springer Nature
ISBN: 3030811352
Category : Science
Languages : en
Pages : 484

Get Book Here

Book Description
This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.

Natural Dynamics of a Precessing Vortex Core in Swirling Flows

Natural Dynamics of a Precessing Vortex Core in Swirling Flows PDF Author: Mark Frederick
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Combustion instability, or the coupling between flame heat release rate oscillations and combustor acoustics, is a significant issue in the operation of gas turbine combustors. This coupling is often driven by oscillations in the flow field. Shear layer roll-up, in particular, has been shown to drive longitudinal combustion instability in multiple systems, including both laboratory and industrial combustors. One method for suppressing combustion instability in these engines would be to suppress the receptivity of the shear layer to acoustic oscillations, severing the coupling mechanism between the acoustics and the flame. Previous work suggested that the existence of a precessing vortex core (PVC) may suppress the receptivity of the shear layer. The goal of this study is to first, understand the basic behavior of a PVC within a flow field, second, confirm that shear layer receptivity suppression is occurring, and lastly, understand the mechanism by which the PVC suppresses the shear layer receptivity. In this work, we couple experiment with linear stability analysis to determine whether a PVC can suppress shear layer receptivity to longitudinal acoustic forcing in a non-reacting swirling flow at a variety of swirl numbers. The shear layer response to the longitudinal acoustic forcing manifests as an m=0 mode since the acoustic field is axisymmetric. The PVC has been shown both in experiment and linear stability analysis to have m=1 and m=-1 modal content. By comparing the relative magnitude of the m=0 and m=-1, 1 modes, we quantify the impact that the PVC has on the shear layer response. The mechanism for shear layer response is determined using companion forced response analysis, where the shear layer disturbance growth rates mirror the experimental results. Differences in shear layer thickness and azimuthal velocity profiles drive the suppression of the shear layer receptivity to acoustic forcing.

Unsteady Combustor Physics

Unsteady Combustor Physics PDF Author: Tim C. Lieuwen
Publisher: Cambridge University Press
ISBN: 1139576836
Category : Technology & Engineering
Languages : en
Pages : 427

Get Book Here

Book Description
Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.

Flow/acoustics Mechanisms in Two- and Three-dimensional Wake Vortices

Flow/acoustics Mechanisms in Two- and Three-dimensional Wake Vortices PDF Author: Wenhua Li
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this study, a vortex particle method is used to simulate incompressible vortical flows, specifically aircraft wake vortices. This is particularly suitable for a wake vortex system that is slowly varying in the axial direction and has a high Reynolds number and low Mach number. The flow field, in the form of vorticity, is employed as the source in the far-field acoustic calculation using a vortex sound formula that enables computation of acoustic signals radiated from an approximated incompressible flow field. In a two-dimensional vortex system, the stretching effect in the axial direction is neglected. The purpose of this study is to focus on vortex core behaviors. A numerical simulation is performed in a more realistic wake consisting of a counter-rotating vortex pair with inviscid ground effects and shear flows. A Kirchhoff spinning-core vortex model is thus used as a starting point. In a vortex system with multiple vortices, such as a complicated aircraft vortex wake vortices, the sound emission frequency of the unsteady vortex core is subjected to change because of interactions between multiple vortices. The behaviors of the influence, indicated by the ratio between the core size and the distance of the vortices, are investigated as well as the underlining vortex core dynamic mechanisms. Cases of co-rotating vortices and a multiple-vortex system composed of two counter-rotating vortex pairs are studied for applications to aircraft wake vortex sound. In three-dimensional vortices, sinusoidal instabilities, which occur in the axial direction at various length scales, result in significant flow structure changes in these vortices, and thus influence their radiated acoustic signals. Cases of vortex rings and a pair of counter-rotating vortices are studied when they are undergoing both long-wave and short-wave instabilities. Both inviscid and viscous interactions are considered and the effects of turbulence are simulated using sub-grid-scale models. A higher peak frequency than the Kirchhoff frequency appears due to the straining field caused by mutual perturbation, under both long-wave and short-wave instabilities. Vortices with the initial core vorticity of the Gaussian distribution and the elliptic distribution are also studied.

Nonsteady Burning and Combustion Stability of Solid Propellants

Nonsteady Burning and Combustion Stability of Solid Propellants PDF Author: Martin Summerfield
Publisher: AIAA
ISBN: 9781600863967
Category : Solid propellants
Languages : en
Pages : 922

Get Book Here

Book Description


On the interactions of sound waves and vortices

On the interactions of sound waves and vortices PDF Author: César Legendre
Publisher: Lulu.com
ISBN: 1326232851
Category : Science
Languages : en
Pages : 378

Get Book Here

Book Description
The effects of vortical mean flows on the propagation of acoustic waves are numerous, from simple convection effects to instabilities in the acoustic phenomena, including absorption, reflection and refraction effects. Therefore, the role of vorticity in acoustic propagation besides noise generation has been a subject of controversial discussions since the foundation of aeroacoustics. In this work, a theoretical study with subsequent industrial applications has been performed, concerning the derivation of a family of scalar operators for aeroacoustics based in total enthalpy terms and including mean vorticity effects in the propagation.

Turbulent Reactive Flows

Turbulent Reactive Flows PDF Author: R. Borghi
Publisher: Springer Science & Business Media
ISBN: 146139631X
Category : Science
Languages : en
Pages : 958

Get Book Here

Book Description
Turbulent reactive flows are of common occurrance in combustion engineering, chemical reactor technology and various types of engines producing power and thrust utilizing chemical and nuclear fuels. Pollutant formation and dispersion in the atmospheric environment and in rivers, lakes and ocean also involve interactions between turbulence, chemical reactivity and heat and mass transfer processes. Considerable advances have occurred over the past twenty years in the understanding, analysis, measurement, prediction and control of turbulent reactive flows. Two main contributors to such advances are improvements in instrumentation and spectacular growth in computation: hardware, sciences and skills and data processing software, each leading to developments in others. Turbulence presents several features that are situation-specific. Both for that reason and a number of others, it is yet difficult to visualize a so-called solution of the turbulence problem or even a generalized approach to the problem. It appears that recognition of patterns and structures in turbulent flow and their study based on considerations of stability, interactions, chaos and fractal character may be opening up an avenue of research that may be leading to a generalized approach to classification and analysis and, possibly, prediction of specific processes in the flowfield. Predictions for engineering use, on the other hand, can be foreseen for sometime to come to depend upon modeling of selected features of turbulence at various levels of sophistication dictated by perceived need and available capability.