Vector Space Projections

Vector Space Projections PDF Author: Henry Stark
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 434

Get Book Here

Book Description
This book reviews the fundamentals of vector space theory, covers principles and applications of vector space projections in general, and projections onto convex sets in particular, provides real-world examples solvable on PCs and modest workstations, features more than 100 illustrations, and includes end-of-chapter exercises and references.

Vector Space Projections

Vector Space Projections PDF Author: Henry Stark
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 434

Get Book Here

Book Description
This book reviews the fundamentals of vector space theory, covers principles and applications of vector space projections in general, and projections onto convex sets in particular, provides real-world examples solvable on PCs and modest workstations, features more than 100 illustrations, and includes end-of-chapter exercises and references.

Optimization by Vector Space Methods

Optimization by Vector Space Methods PDF Author: David G. Luenberger
Publisher: John Wiley & Sons
ISBN: 9780471181170
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.

A Vector Space Approach to Geometry

A Vector Space Approach to Geometry PDF Author: Melvin Hausner
Publisher: Courier Dover Publications
ISBN: 0486835391
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.

Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition

Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition PDF Author: Haruo Yanai
Publisher: Springer Science & Business Media
ISBN: 144199887X
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.

A Primer in Econometric Theory

A Primer in Econometric Theory PDF Author: John Stachurski
Publisher: MIT Press
ISBN: 0262337460
Category : Business & Economics
Languages : en
Pages : 449

Get Book Here

Book Description
A concise treatment of modern econometrics and statistics, including underlying ideas from linear algebra, probability theory, and computer programming. This book offers a cogent and concise treatment of econometric theory and methods along with the underlying ideas from statistics, probability theory, and linear algebra. It emphasizes foundations and general principles, but also features many solved exercises, worked examples, and code listings. After mastering the material presented, readers will be ready to take on more advanced work in different areas of quantitative economics and to understand papers from the econometrics literature. The book can be used in graduate-level courses on foundational aspects of econometrics or on fundamental statistical principles. It will also be a valuable reference for independent study. One distinctive aspect of the text is its integration of traditional topics from statistics and econometrics with modern ideas from data science and machine learning; readers will encounter ideas that are driving the current development of statistics and increasingly filtering into econometric methodology. The text treats programming not only as a way to work with data but also as a technique for building intuition via simulation. Many proofs are followed by a simulation that shows the theory in action. As a primer, the book offers readers an entry point into the field, allowing them to see econometrics as a whole rather than as a profusion of apparently unrelated ideas.

Finite-Dimensional Vector Spaces

Finite-Dimensional Vector Spaces PDF Author: Paul R. Halmos
Publisher: Courier Dover Publications
ISBN: 0486822265
Category : Mathematics
Languages : en
Pages : 209

Get Book Here

Book Description
Classic, widely cited, and accessible treatment offers an ideal supplement to many traditional linear algebra texts. "Extremely well-written and logical, with short and elegant proofs." — MAA Reviews. 1958 edition.

Topological Vector Spaces and Their Applications

Topological Vector Spaces and Their Applications PDF Author: V.I. Bogachev
Publisher: Springer
ISBN: 3319571176
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.

Analysis in Vector Spaces

Analysis in Vector Spaces PDF Author: Mustafa A. Akcoglu
Publisher: John Wiley & Sons
ISBN: 1118164598
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
A rigorous introduction to calculus in vector spaces The concepts and theorems of advanced calculus combined withrelated computational methods are essential to understanding nearlyall areas of quantitative science. Analysis in Vector Spacespresents the central results of this classic subject throughrigorous arguments, discussions, and examples. The book aims tocultivate not only knowledge of the major theoretical results, butalso the geometric intuition needed for both mathematicalproblem-solving and modeling in the formal sciences. The authors begin with an outline of key concepts, terminology,and notation and also provide a basic introduction to set theory,the properties of real numbers, and a review of linear algebra. Anelegant approach to eigenvector problems and the spectral theoremsets the stage for later results on volume and integration.Subsequent chapters present the major results of differential andintegral calculus of several variables as well as the theory ofmanifolds. Additional topical coverage includes: Sets and functions Real numbers Vector functions Normed vector spaces First- and higher-order derivatives Diffeomorphisms and manifolds Multiple integrals Integration on manifolds Stokes' theorem Basic point set topology Numerous examples and exercises are provided in each chapter toreinforce new concepts and to illustrate how results can be appliedto additional problems. Furthermore, proofs and examples arepresented in a clear style that emphasizes the underlying intuitiveideas. Counterexamples are provided throughout the book to warnagainst possible mistakes, and extensive appendices outline theconstruction of real numbers, include a fundamental result aboutdimension, and present general results about determinants. Assuming only a fundamental understanding of linear algebra andsingle variable calculus, Analysis in Vector Spaces is anexcellent book for a second course in analysis for mathematics,physics, computer science, and engineering majors at theundergraduate and graduate levels. It also serves as a valuablereference for further study in any discipline that requires a firmunderstanding of mathematical techniques and concepts.

Linear Algebra Done Right

Linear Algebra Done Right PDF Author: Sheldon Axler
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.

Projectors and Projection Methods

Projectors and Projection Methods PDF Author: Aurél Galántai
Publisher: Springer Science & Business Media
ISBN: 1441991808
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
The projectors are considered as simple but important type of matrices and operators. Their basic theory can be found in many books, among which Hal mas [177], [178] are of particular significance. The projectors or projections became an active research area in the last two decades due to ideas generated from linear algebra, statistics and various areas of algorithmic mathematics. There has also grown up a great and increasing number of projection meth ods for different purposes. The aim of this book is to give a unified survey on projectors and projection methods including the most recent results. The words projector, projection and idempotent are used as synonyms, although the word projection is more common. We assume that the reader is familiar with linear algebra and mathemati cal analysis at a bachelor level. The first chapter includes supplements from linear algebra and matrix analysis that are not incorporated in the standard courses. The second and the last chapter include the theory of projectors. Four chapters are devoted to projection methods for solving linear and non linear systems of algebraic equations and convex optimization problems.