Author: Shinichi Nakajima
Publisher: Cambridge University Press
ISBN: 1107076153
Category : Computers
Languages : en
Pages : 561
Book Description
This introduction to the theory of variational Bayesian learning summarizes recent developments and suggests practical applications.
Variational Bayesian Learning Theory
Variational Bayesian Learning Theory
Author: Shinichi Nakajima
Publisher: Cambridge University Press
ISBN: 1316997219
Category : Computers
Languages : en
Pages : 561
Book Description
Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
Publisher: Cambridge University Press
ISBN: 1316997219
Category : Computers
Languages : en
Pages : 561
Book Description
Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
The Variational Bayes Method in Signal Processing
Author: Václav Šmídl
Publisher: Springer Science & Business Media
ISBN: 3540288201
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Treating VB approximation in signal processing, this monograph is for academic and industrial research groups in signal processing, data analysis, machine learning and identification. It reviews distributional approximation, showing that tractable algorithms for parametric model identification can be generated in off-line and on-line contexts.
Publisher: Springer Science & Business Media
ISBN: 3540288201
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Treating VB approximation in signal processing, this monograph is for academic and industrial research groups in signal processing, data analysis, machine learning and identification. It reviews distributional approximation, showing that tractable algorithms for parametric model identification can be generated in off-line and on-line contexts.
Algorithmic Learning Theory
Author: Sanjay Jain
Publisher: Springer Science & Business Media
ISBN: 354029242X
Category : Computers
Languages : en
Pages : 502
Book Description
This book constitutes the refereed proceedings of the 16th International Conference on Algorithmic Learning Theory, ALT 2005, held in Singapore in October 2005. The 30 revised full papers presented together with 5 invited papers and an introduction by the editors were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on kernel-based learning, bayesian and statistical models, PAC-learning, query-learning, inductive inference, language learning, learning and logic, learning from expert advice, online learning, defensive forecasting, and teaching.
Publisher: Springer Science & Business Media
ISBN: 354029242X
Category : Computers
Languages : en
Pages : 502
Book Description
This book constitutes the refereed proceedings of the 16th International Conference on Algorithmic Learning Theory, ALT 2005, held in Singapore in October 2005. The 30 revised full papers presented together with 5 invited papers and an introduction by the editors were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on kernel-based learning, bayesian and statistical models, PAC-learning, query-learning, inductive inference, language learning, learning and logic, learning from expert advice, online learning, defensive forecasting, and teaching.
Algebraic Geometry and Statistical Learning Theory
Author: Sumio Watanabe
Publisher: Cambridge University Press
ISBN: 0521864674
Category : Computers
Languages : en
Pages : 295
Book Description
Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
Publisher: Cambridge University Press
ISBN: 0521864674
Category : Computers
Languages : en
Pages : 295
Book Description
Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
Graphical Models, Exponential Families, and Variational Inference
Author: Martin J. Wainwright
Publisher: Now Publishers Inc
ISBN: 1601981848
Category : Computers
Languages : en
Pages : 324
Book Description
The core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.
Publisher: Now Publishers Inc
ISBN: 1601981848
Category : Computers
Languages : en
Pages : 324
Book Description
The core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.
Advanced Lectures on Machine Learning
Author: Olivier Bousquet
Publisher: Springer
ISBN: 3540286500
Category : Computers
Languages : en
Pages : 249
Book Description
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.
Publisher: Springer
ISBN: 3540286500
Category : Computers
Languages : en
Pages : 249
Book Description
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.
Algorithmic Learning Theory
Author:
Publisher:
ISBN:
Category : Computer algorithms
Languages : en
Pages : 542
Book Description
Publisher:
ISBN:
Category : Computer algorithms
Languages : en
Pages : 542
Book Description
Inference and Learning from Data
Author: Ali H. Sayed
Publisher: Cambridge University Press
ISBN: 1009218263
Category : Computers
Languages : en
Pages : 1165
Book Description
Discover techniques for inferring unknown variables and quantities with the second volume of this extraordinary three-volume set.
Publisher: Cambridge University Press
ISBN: 1009218263
Category : Computers
Languages : en
Pages : 1165
Book Description
Discover techniques for inferring unknown variables and quantities with the second volume of this extraordinary three-volume set.
Bayesian Time Series Models
Author: David Barber
Publisher: Cambridge University Press
ISBN: 0521196760
Category : Computers
Languages : en
Pages : 432
Book Description
The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.
Publisher: Cambridge University Press
ISBN: 0521196760
Category : Computers
Languages : en
Pages : 432
Book Description
The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.