Author: Robert B. Gennis
Publisher: Springer Science & Business Media
ISBN: 1475720653
Category : Science
Languages : en
Pages : 549
Book Description
New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermody namics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses.
Biomembranes
Author: Robert B. Gennis
Publisher: Springer Science & Business Media
ISBN: 1475720653
Category : Science
Languages : en
Pages : 549
Book Description
New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermody namics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses.
Publisher: Springer Science & Business Media
ISBN: 1475720653
Category : Science
Languages : en
Pages : 549
Book Description
New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermody namics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses.
Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes
Author: Samuel Safran
Publisher: CRC Press
ISBN: 0429976763
Category : Science
Languages : en
Pages : 204
Book Description
Understanding the structural and thermodynamic properties of surfaces, interfaces, and membranes is important for both fundamental and practical reasons. Important applications include coatings, dispersants, encapsulating agents, and biological materials. Soft materials, important in the development of new materials and the basis of many biological systems, cannot be designed using trial and error methods due to the multiplicity of components and parameters. While these systems can sometimes be analyzed in terms of microscopic mixtures, it is often conceptually simpler to regard them as dispersions and to focus on the properties of the internal interfaces found in these systems. The basic physics centers on the properties of quasi-two-dimensional systems embedded in the three-dimensional world, thus exhibiting phenomena that do not exist in bulk materials. This approach is the basis behind the theoretical presentation of Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. The approach adapted allows one to treat the rich diversity of phenomena investigated in the field of soft matter physics (including both colloid/interface science as well as the materials and macromolecular aspects of biological physics) such as interfacial tension, the roughening transition, wetting, interactions between surfaces, membrane elasticity, and self-assembly. Presented as a set of lecture notes, this book is aimed at physicists, physical chemists, biological physicists, chemical engineers, and materials scientists who are interested in the statistical mechanics that underlie the macroscopic, thermodynamic properties of surfaces, interfaces, and membranes. This paperback edition contains all the material published in the original hard-cover edition as well as additional clarifications and explanations.
Publisher: CRC Press
ISBN: 0429976763
Category : Science
Languages : en
Pages : 204
Book Description
Understanding the structural and thermodynamic properties of surfaces, interfaces, and membranes is important for both fundamental and practical reasons. Important applications include coatings, dispersants, encapsulating agents, and biological materials. Soft materials, important in the development of new materials and the basis of many biological systems, cannot be designed using trial and error methods due to the multiplicity of components and parameters. While these systems can sometimes be analyzed in terms of microscopic mixtures, it is often conceptually simpler to regard them as dispersions and to focus on the properties of the internal interfaces found in these systems. The basic physics centers on the properties of quasi-two-dimensional systems embedded in the three-dimensional world, thus exhibiting phenomena that do not exist in bulk materials. This approach is the basis behind the theoretical presentation of Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. The approach adapted allows one to treat the rich diversity of phenomena investigated in the field of soft matter physics (including both colloid/interface science as well as the materials and macromolecular aspects of biological physics) such as interfacial tension, the roughening transition, wetting, interactions between surfaces, membrane elasticity, and self-assembly. Presented as a set of lecture notes, this book is aimed at physicists, physical chemists, biological physicists, chemical engineers, and materials scientists who are interested in the statistical mechanics that underlie the macroscopic, thermodynamic properties of surfaces, interfaces, and membranes. This paperback edition contains all the material published in the original hard-cover edition as well as additional clarifications and explanations.
Molecular Simulations and Biomembranes
Author: Mark S P Sansom
Publisher: Royal Society of Chemistry
ISBN: 1849732159
Category : Science
Languages : en
Pages : 331
Book Description
The need for information in the understanding of membrane systems has been caused by three things - an increase in computer power; methodological developments and the recent expansion in the number of researchers working on it worldwide. However, there has been no up-to-date book that covers the application of simulation methods to membrane systems directly and this book fills an important void in the market. It provides a much needed update on the current methods and applications as well as highlighting recent advances in the way computer simulation can be applied to the field of membranes and membrane proteins. The objectives are to show how simulation methods can provide an important contribution to the understanding of these systems. The scope of the book is such that it covers simulation of membranes and membrane proteins, but also covers the more recent methodological developments such as coarse-grained molecular dynamics and multiscale approaches in systems biology. Applications embrace a range of biological processes including ion channel and transport proteins. The book is wide ranging with broad coverage and a strong coupling to experimental results wherever possible, including colour illustrations to highlight particular aspects of molecular structure. With an internationally respected list of authors, its publication is timely and it will prove indispensable to a large scientific readership.
Publisher: Royal Society of Chemistry
ISBN: 1849732159
Category : Science
Languages : en
Pages : 331
Book Description
The need for information in the understanding of membrane systems has been caused by three things - an increase in computer power; methodological developments and the recent expansion in the number of researchers working on it worldwide. However, there has been no up-to-date book that covers the application of simulation methods to membrane systems directly and this book fills an important void in the market. It provides a much needed update on the current methods and applications as well as highlighting recent advances in the way computer simulation can be applied to the field of membranes and membrane proteins. The objectives are to show how simulation methods can provide an important contribution to the understanding of these systems. The scope of the book is such that it covers simulation of membranes and membrane proteins, but also covers the more recent methodological developments such as coarse-grained molecular dynamics and multiscale approaches in systems biology. Applications embrace a range of biological processes including ion channel and transport proteins. The book is wide ranging with broad coverage and a strong coupling to experimental results wherever possible, including colour illustrations to highlight particular aspects of molecular structure. With an internationally respected list of authors, its publication is timely and it will prove indispensable to a large scientific readership.
Free Energy Calculations
Author: Christophe Chipot
Publisher: Springer Science & Business Media
ISBN: 3540384472
Category : Language Arts & Disciplines
Languages : en
Pages : 528
Book Description
Free energy constitutes the most important thermodynamic quantity to understand how chemical species recognize each other, associate or react. Examples of problems in which knowledge of the underlying free energy behaviour is required, include conformational equilibria and molecular association, partitioning between immiscible liquids, receptor-drug interaction, protein-protein and protein-DNA association, and protein stability. This volume sets out to present a coherent and comprehensive account of the concepts that underlie different approaches devised for the determination of free energies. The reader will gain the necessary insight into the theoretical and computational foundations of the subject and will be presented with relevant applications from molecular-level modelling and simulations of chemical and biological systems. Both formally accurate and approximate methods are covered using both classical and quantum mechanical descriptions. A central theme of the book is that the wide variety of free energy calculation techniques available today can be understood as different implementations of a few basic principles. The book is aimed at a broad readership of graduate students and researchers having a background in chemistry, physics, engineering and physical biology.
Publisher: Springer Science & Business Media
ISBN: 3540384472
Category : Language Arts & Disciplines
Languages : en
Pages : 528
Book Description
Free energy constitutes the most important thermodynamic quantity to understand how chemical species recognize each other, associate or react. Examples of problems in which knowledge of the underlying free energy behaviour is required, include conformational equilibria and molecular association, partitioning between immiscible liquids, receptor-drug interaction, protein-protein and protein-DNA association, and protein stability. This volume sets out to present a coherent and comprehensive account of the concepts that underlie different approaches devised for the determination of free energies. The reader will gain the necessary insight into the theoretical and computational foundations of the subject and will be presented with relevant applications from molecular-level modelling and simulations of chemical and biological systems. Both formally accurate and approximate methods are covered using both classical and quantum mechanical descriptions. A central theme of the book is that the wide variety of free energy calculation techniques available today can be understood as different implementations of a few basic principles. The book is aimed at a broad readership of graduate students and researchers having a background in chemistry, physics, engineering and physical biology.
Biophysical Approaches for the Study of Membrane Structure Part B
Author:
Publisher: Elsevier
ISBN: 0443295670
Category : Science
Languages : en
Pages : 630
Book Description
Biophysical Approaches for the Study of Membrane Structure, Part B, Volume 701 explores lipid membrane asymmetry and lateral heterogeneity. A burst of recent research has shown that bilayers whose leaflets differ in their physical properties—such as composition, phase state, or lateral stress—exhibit many fascinating new characteristics, but also pose a host of challenges related to their creation, characterization, simulation, and theoretical description. Chapters in this new release include Characterization of domain formation in complex membranes: Analyzing the bending modulus from simulations of complex membranes, The density-threshold affinity: Calculating lipid binding affinities from unbiased Coarse-Grain Molecular Dynamics simulations, and much more.Additional sections cover Uncertainty quantification for trans-membrane stresses and moments from simulation, Using molecular dynamics simulations to generate small-angle scattering curves and cryo-EM images of proteoliposomes, Binary Bilayer Simulations for Partitioning Within Membranes, Modeling Asymmetric Cell Membranes at All-atom Resolution, Multiscale remodeling of biomembranes and vesicles, Building complex membranes with Martini 3, Predicting lipid sorting in curved bilayer membranes, Simulating asymmetric membranes using P21 periodic boundary conditions, and many other interesting topics. - Explore the state-of-the-art of lipid membrane asymmetry - Covers experimental, theoretical, and computational techniques to create and characterize asymmetric lipid membranes - Teaches how these kinds of approaches create and characterize laterally inhomogeneous membranes
Publisher: Elsevier
ISBN: 0443295670
Category : Science
Languages : en
Pages : 630
Book Description
Biophysical Approaches for the Study of Membrane Structure, Part B, Volume 701 explores lipid membrane asymmetry and lateral heterogeneity. A burst of recent research has shown that bilayers whose leaflets differ in their physical properties—such as composition, phase state, or lateral stress—exhibit many fascinating new characteristics, but also pose a host of challenges related to their creation, characterization, simulation, and theoretical description. Chapters in this new release include Characterization of domain formation in complex membranes: Analyzing the bending modulus from simulations of complex membranes, The density-threshold affinity: Calculating lipid binding affinities from unbiased Coarse-Grain Molecular Dynamics simulations, and much more.Additional sections cover Uncertainty quantification for trans-membrane stresses and moments from simulation, Using molecular dynamics simulations to generate small-angle scattering curves and cryo-EM images of proteoliposomes, Binary Bilayer Simulations for Partitioning Within Membranes, Modeling Asymmetric Cell Membranes at All-atom Resolution, Multiscale remodeling of biomembranes and vesicles, Building complex membranes with Martini 3, Predicting lipid sorting in curved bilayer membranes, Simulating asymmetric membranes using P21 periodic boundary conditions, and many other interesting topics. - Explore the state-of-the-art of lipid membrane asymmetry - Covers experimental, theoretical, and computational techniques to create and characterize asymmetric lipid membranes - Teaches how these kinds of approaches create and characterize laterally inhomogeneous membranes
Peptide-Lipid Interactions
Author: Sidney A. Simon
Publisher: Academic Press
ISBN: 0080925855
Category : Science
Languages : en
Pages : 606
Book Description
This volume contains a comprehensive overview of peptide-lipid interactions by leading researchers. The first part covers theoretical concepts, experimental considerations, and thermodynamics. The second part presents new results obtained through site-directed EPR, electron microscopy, NMR, isothermal calorimetry, and fluorescence quenching. The final part covers problems of biological interest, including signal transduction, membrane transport, fusion, and adhesion. Key Features * world-renowned experts * state-of-the-art experimental methods * monolayers, bilayers, biological membranes * theoretical aspects and computer simulations * rafts * synaptic transmission * membrane fusion * signal transduction
Publisher: Academic Press
ISBN: 0080925855
Category : Science
Languages : en
Pages : 606
Book Description
This volume contains a comprehensive overview of peptide-lipid interactions by leading researchers. The first part covers theoretical concepts, experimental considerations, and thermodynamics. The second part presents new results obtained through site-directed EPR, electron microscopy, NMR, isothermal calorimetry, and fluorescence quenching. The final part covers problems of biological interest, including signal transduction, membrane transport, fusion, and adhesion. Key Features * world-renowned experts * state-of-the-art experimental methods * monolayers, bilayers, biological membranes * theoretical aspects and computer simulations * rafts * synaptic transmission * membrane fusion * signal transduction
Molecular Modeling and Simulation
Author: Tamar Schlick
Publisher: Springer Science & Business Media
ISBN: 0387224645
Category : Science
Languages : en
Pages : 669
Book Description
Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text
Publisher: Springer Science & Business Media
ISBN: 0387224645
Category : Science
Languages : en
Pages : 669
Book Description
Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text
Lipid-mediated Protein Signaling
Author: Daniel G.S. Capelluto
Publisher: Springer Science & Business Media
ISBN: 940076331X
Category : Medical
Languages : en
Pages : 227
Book Description
This book provides the most updated information of how membrane lipids mediate protein signaling from studies carried out in animal and plant cells. Also, there are some chapters that go beyond and expand these studies of protein-lipid interactions at the structural level. The book begins with a literature review from investigations associated to sphingolipids, followed by studies that describe the role of phosphoinositides in signaling and closing with the function of other key lipids in signaling at the plasma membrane and intracellular organelles.
Publisher: Springer Science & Business Media
ISBN: 940076331X
Category : Medical
Languages : en
Pages : 227
Book Description
This book provides the most updated information of how membrane lipids mediate protein signaling from studies carried out in animal and plant cells. Also, there are some chapters that go beyond and expand these studies of protein-lipid interactions at the structural level. The book begins with a literature review from investigations associated to sphingolipids, followed by studies that describe the role of phosphoinositides in signaling and closing with the function of other key lipids in signaling at the plasma membrane and intracellular organelles.
Membrane Protein Crystallization
Author:
Publisher: Academic Press
ISBN: 0080961592
Category : Science
Languages : en
Pages : 334
Book Description
This volume of Current Topics in Membranes focuses on Membrane Protein Crystallization, beginning with a review of past successes and general trends, then further discussing challenges of mebranes protein crystallization, cell free production of membrane proteins and novel lipids for membrane protein crystallization. This publication also includes tools to enchance membrane protein crystallization, technique advancements, and crystallization strategies used for photosystem I and its complexes, establishing Membrane Protein Crystallization as a needed, practical reference for researchers.
Publisher: Academic Press
ISBN: 0080961592
Category : Science
Languages : en
Pages : 334
Book Description
This volume of Current Topics in Membranes focuses on Membrane Protein Crystallization, beginning with a review of past successes and general trends, then further discussing challenges of mebranes protein crystallization, cell free production of membrane proteins and novel lipids for membrane protein crystallization. This publication also includes tools to enchance membrane protein crystallization, technique advancements, and crystallization strategies used for photosystem I and its complexes, establishing Membrane Protein Crystallization as a needed, practical reference for researchers.
Computational Modeling of Membrane Bilayers
Author: V. Sundararajan
Publisher: Academic Press
ISBN: 0080920500
Category : Science
Languages : en
Pages : 493
Book Description
Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology. Discusses the current state of electrostatics in biomolecular simulations and future directions Includes information on time and length scales in lipid bilayer simulations Includes a chapter on the nature of lipid rafts
Publisher: Academic Press
ISBN: 0080920500
Category : Science
Languages : en
Pages : 493
Book Description
Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology. Discusses the current state of electrostatics in biomolecular simulations and future directions Includes information on time and length scales in lipid bilayer simulations Includes a chapter on the nature of lipid rafts