Author: Melvyn Bernard Nathanson
Publisher: American Mathematical Soc.
ISBN: 9780821871065
Category : Literary Criticism
Languages : en
Pages : 276
Book Description
This volume contains the proceedings of the workshop held at the DIMACS Center of Rutgers University (Piscataway, NJ) on Unusual Applications of Number Theory. Standard applications of number theory are to computer science and cryptology. In this volume, well-known number theorist, Melvyn B. Nathanson, gathers articles from the workshop on other, less standard applications in number theory, as well as topics in number theory with potential applications in science and engineering. The material is suitable for graduate students and researchers interested in number theory and its applications.
Unusual Applications of Number Theory
Author: Melvyn Bernard Nathanson
Publisher: American Mathematical Soc.
ISBN: 9780821871065
Category : Literary Criticism
Languages : en
Pages : 276
Book Description
This volume contains the proceedings of the workshop held at the DIMACS Center of Rutgers University (Piscataway, NJ) on Unusual Applications of Number Theory. Standard applications of number theory are to computer science and cryptology. In this volume, well-known number theorist, Melvyn B. Nathanson, gathers articles from the workshop on other, less standard applications in number theory, as well as topics in number theory with potential applications in science and engineering. The material is suitable for graduate students and researchers interested in number theory and its applications.
Publisher: American Mathematical Soc.
ISBN: 9780821871065
Category : Literary Criticism
Languages : en
Pages : 276
Book Description
This volume contains the proceedings of the workshop held at the DIMACS Center of Rutgers University (Piscataway, NJ) on Unusual Applications of Number Theory. Standard applications of number theory are to computer science and cryptology. In this volume, well-known number theorist, Melvyn B. Nathanson, gathers articles from the workshop on other, less standard applications in number theory, as well as topics in number theory with potential applications in science and engineering. The material is suitable for graduate students and researchers interested in number theory and its applications.
From Great Discoveries in Number Theory to Applications
Author: Michal Křížek
Publisher: Springer Nature
ISBN: 3030838994
Category : Mathematics
Languages : en
Pages : 342
Book Description
This book provides an overview of many interesting properties of natural numbers, demonstrating their applications in areas such as cryptography, geometry, astronomy, mechanics, computer science, and recreational mathematics. In particular, it presents the main ideas of error-detecting and error-correcting codes, digital signatures, hashing functions, generators of pseudorandom numbers, and the RSA method based on large prime numbers. A diverse array of topics is covered, from the properties and applications of prime numbers, some surprising connections between number theory and graph theory, pseudoprimes, Fibonacci and Lucas numbers, and the construction of Magic and Latin squares, to the mathematics behind Prague’s astronomical clock. Introducing a general mathematical audience to some of the basic ideas and algebraic methods connected with various types of natural numbers, the book will provide invaluable reading for amateurs and professionals alike.
Publisher: Springer Nature
ISBN: 3030838994
Category : Mathematics
Languages : en
Pages : 342
Book Description
This book provides an overview of many interesting properties of natural numbers, demonstrating their applications in areas such as cryptography, geometry, astronomy, mechanics, computer science, and recreational mathematics. In particular, it presents the main ideas of error-detecting and error-correcting codes, digital signatures, hashing functions, generators of pseudorandom numbers, and the RSA method based on large prime numbers. A diverse array of topics is covered, from the properties and applications of prime numbers, some surprising connections between number theory and graph theory, pseudoprimes, Fibonacci and Lucas numbers, and the construction of Magic and Latin squares, to the mathematics behind Prague’s astronomical clock. Introducing a general mathematical audience to some of the basic ideas and algebraic methods connected with various types of natural numbers, the book will provide invaluable reading for amateurs and professionals alike.
Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Advanced Number Theory with Applications
Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 1420083295
Category : Computers
Languages : en
Pages : 440
Book Description
Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Publisher: CRC Press
ISBN: 1420083295
Category : Computers
Languages : en
Pages : 440
Book Description
Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Number Theory and Its Applications
Author: Fuhuo Li
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814425636
Category : Mathematics
Languages : en
Pages : 194
Book Description
This book emphasizes the role of symmetry and presents as many viewpoints as possible of an important phenomenon - the functional equation of the associated zeta-function. It starts from the basics before warping into the space of new interest; from the ground state to the excited state. For example, the Euler function is treated in several different places, as the number of generators of a finite cyclic group, as one counting the order of the multiplicative group of reduced residue classes modulo q, and as the order and degree of the Galois group of the cyclotomic field, respectively. One of the important principles of learning is to work with the material many times. This book presents many worked-out examples and exercises to enhance the reader's comprehension on the topics covered in an in-depth manner. This is done in a differ-ent setting each time such that the reader will always be challenged. For the keen reader, even browsing the text alone, without solving the exercises, will yield some knowledge and enjoyment.
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814425636
Category : Mathematics
Languages : en
Pages : 194
Book Description
This book emphasizes the role of symmetry and presents as many viewpoints as possible of an important phenomenon - the functional equation of the associated zeta-function. It starts from the basics before warping into the space of new interest; from the ground state to the excited state. For example, the Euler function is treated in several different places, as the number of generators of a finite cyclic group, as one counting the order of the multiplicative group of reduced residue classes modulo q, and as the order and degree of the Galois group of the cyclotomic field, respectively. One of the important principles of learning is to work with the material many times. This book presents many worked-out examples and exercises to enhance the reader's comprehension on the topics covered in an in-depth manner. This is done in a differ-ent setting each time such that the reader will always be challenged. For the keen reader, even browsing the text alone, without solving the exercises, will yield some knowledge and enjoyment.
Foundations of Cryptography: Volume 1, Basic Tools
Author: Oded Goldreich
Publisher: Cambridge University Press
ISBN: 9780521791724
Category : Computers
Languages : en
Pages : 392
Book Description
Cryptography is concerned with the conceptualization, definition and construction of computing systems that address security concerns. This book presents a rigorous and systematic treatment of the foundational issues: defining cryptographic tasks and solving new cryptographic problems using existing tools. It focuses on the basic mathematical tools: computational difficulty (one-way functions), pseudorandomness and zero-knowledge proofs. Rather than describing ad-hoc approaches, this book emphasizes the clarification of fundamental concepts and the demonstration of the feasibility of solving cryptographic problems. It is suitable for use in a graduate course on cryptography and as a reference book for experts.
Publisher: Cambridge University Press
ISBN: 9780521791724
Category : Computers
Languages : en
Pages : 392
Book Description
Cryptography is concerned with the conceptualization, definition and construction of computing systems that address security concerns. This book presents a rigorous and systematic treatment of the foundational issues: defining cryptographic tasks and solving new cryptographic problems using existing tools. It focuses on the basic mathematical tools: computational difficulty (one-way functions), pseudorandomness and zero-knowledge proofs. Rather than describing ad-hoc approaches, this book emphasizes the clarification of fundamental concepts and the demonstration of the feasibility of solving cryptographic problems. It is suitable for use in a graduate course on cryptography and as a reference book for experts.
Introduction to Number Theory
Author: Anthony Vazzana
Publisher: CRC Press
ISBN: 1584889381
Category : Computers
Languages : en
Pages : 530
Book Description
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topi
Publisher: CRC Press
ISBN: 1584889381
Category : Computers
Languages : en
Pages : 530
Book Description
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topi
Elementary Number Theory: Primes, Congruences, and Secrets
Author: William Stein
Publisher: Springer Science & Business Media
ISBN: 0387855254
Category : Mathematics
Languages : en
Pages : 173
Book Description
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
Publisher: Springer Science & Business Media
ISBN: 0387855254
Category : Mathematics
Languages : en
Pages : 173
Book Description
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
An Introduction to Number Theory with Cryptography
Author: James Kraft
Publisher: CRC Press
ISBN: 1351664107
Category : Computers
Languages : en
Pages : 409
Book Description
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
Publisher: CRC Press
ISBN: 1351664107
Category : Computers
Languages : en
Pages : 409
Book Description
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
Algebraic Number Theory
Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 1439845999
Category : Computers
Languages : en
Pages : 424
Book Description
Bringing the material up to date to reflect modern applications, this second edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. It offers a more complete and involved treatment of Galois theory, a more comprehensive section on Pollard's cubic factoring algorithm, and more detailed explanations of proofs to provide a sound understanding of challenging material. This edition also studies binary quadratic forms and compares the ideal and form class groups. The text includes convenient cross-referencing, a comprehensive index, and numerous exercises and applications.
Publisher: CRC Press
ISBN: 1439845999
Category : Computers
Languages : en
Pages : 424
Book Description
Bringing the material up to date to reflect modern applications, this second edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. It offers a more complete and involved treatment of Galois theory, a more comprehensive section on Pollard's cubic factoring algorithm, and more detailed explanations of proofs to provide a sound understanding of challenging material. This edition also studies binary quadratic forms and compares the ideal and form class groups. The text includes convenient cross-referencing, a comprehensive index, and numerous exercises and applications.