Author: Philip D. Waggoner
Publisher: Cambridge University Press
ISBN: 1108879837
Category : Political Science
Languages : en
Pages : 70
Book Description
In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering.
Unsupervised Machine Learning for Clustering in Political and Social Research
Author: Philip D. Waggoner
Publisher: Cambridge University Press
ISBN: 1108879837
Category : Political Science
Languages : en
Pages : 70
Book Description
In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering.
Publisher: Cambridge University Press
ISBN: 1108879837
Category : Political Science
Languages : en
Pages : 70
Book Description
In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering.
Modern Dimension Reduction
Author: Philip D. Waggoner
Publisher: Cambridge University Press
ISBN: 1108991645
Category : Political Science
Languages : en
Pages : 98
Book Description
Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github.
Publisher: Cambridge University Press
ISBN: 1108991645
Category : Political Science
Languages : en
Pages : 98
Book Description
Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github.
Introduction to R for Social Scientists
Author: Ryan Kennedy
Publisher: CRC Press
ISBN: 1000353877
Category : Mathematics
Languages : en
Pages : 234
Book Description
Introduction to R for Social Scientists: A Tidy Programming Approach introduces the Tidy approach to programming in R for social science research to help quantitative researchers develop a modern technical toolbox. The Tidy approach is built around consistent syntax, common grammar, and stacked code, which contribute to clear, efficient programming. The authors include hundreds of lines of code to demonstrate a suite of techniques for developing and debugging an efficient social science research workflow. To deepen the dedication to teaching Tidy best practices for conducting social science research in R, the authors include numerous examples using real world data including the American National Election Study and the World Indicators Data. While no prior experience in R is assumed, readers are expected to be acquainted with common social science research designs and terminology. Whether used as a reference manual or read from cover to cover, readers will be equipped with a deeper understanding of R and the Tidyverse, as well as a framework for how best to leverage these powerful tools to write tidy, efficient code for solving problems. To this end, the authors provide many suggestions for additional readings and tools to build on the concepts covered. They use all covered techniques in their own work as scholars and practitioners.
Publisher: CRC Press
ISBN: 1000353877
Category : Mathematics
Languages : en
Pages : 234
Book Description
Introduction to R for Social Scientists: A Tidy Programming Approach introduces the Tidy approach to programming in R for social science research to help quantitative researchers develop a modern technical toolbox. The Tidy approach is built around consistent syntax, common grammar, and stacked code, which contribute to clear, efficient programming. The authors include hundreds of lines of code to demonstrate a suite of techniques for developing and debugging an efficient social science research workflow. To deepen the dedication to teaching Tidy best practices for conducting social science research in R, the authors include numerous examples using real world data including the American National Election Study and the World Indicators Data. While no prior experience in R is assumed, readers are expected to be acquainted with common social science research designs and terminology. Whether used as a reference manual or read from cover to cover, readers will be equipped with a deeper understanding of R and the Tidyverse, as well as a framework for how best to leverage these powerful tools to write tidy, efficient code for solving problems. To this end, the authors provide many suggestions for additional readings and tools to build on the concepts covered. They use all covered techniques in their own work as scholars and practitioners.
Text Analysis in Python for Social Scientists
Author: Dirk Hovy
Publisher: Cambridge University Press
ISBN: 1108963099
Category : Political Science
Languages : en
Pages : 102
Book Description
Text contains a wealth of information about about a wide variety of sociocultural constructs. Automated prediction methods can infer these quantities (sentiment analysis is probably the most well-known application). However, there is virtually no limit to the kinds of things we can predict from text: power, trust, misogyny, are all signaled in language. These algorithms easily scale to corpus sizes infeasible for manual analysis. Prediction algorithms have become steadily more powerful, especially with the advent of neural network methods. However, applying these techniques usually requires profound programming knowledge and machine learning expertise. As a result, many social scientists do not apply them. This Element provides the working social scientist with an overview of the most common methods for text classification, an intuition of their applicability, and Python code to execute them. It covers both the ethical foundations of such work as well as the emerging potential of neural network methods.
Publisher: Cambridge University Press
ISBN: 1108963099
Category : Political Science
Languages : en
Pages : 102
Book Description
Text contains a wealth of information about about a wide variety of sociocultural constructs. Automated prediction methods can infer these quantities (sentiment analysis is probably the most well-known application). However, there is virtually no limit to the kinds of things we can predict from text: power, trust, misogyny, are all signaled in language. These algorithms easily scale to corpus sizes infeasible for manual analysis. Prediction algorithms have become steadily more powerful, especially with the advent of neural network methods. However, applying these techniques usually requires profound programming knowledge and machine learning expertise. As a result, many social scientists do not apply them. This Element provides the working social scientist with an overview of the most common methods for text classification, an intuition of their applicability, and Python code to execute them. It covers both the ethical foundations of such work as well as the emerging potential of neural network methods.
Survival Analysis
Author: Alejandro Quiroz Flores
Publisher: Cambridge University Press
ISBN: 100906231X
Category : Political Science
Languages : en
Pages : 136
Book Description
Quantitative social scientists use survival analysis to understand the forces that determine the duration of events. This Element provides a guideline to new techniques and models in survival analysis, particularly in three areas: non-proportional covariate effects, competing risks, and multi-state models. It also revisits models for repeated events. The Element promotes multi-state models as a unified framework for survival analysis and highlights the role of general transition probabilities as key quantities of interest that complement traditional hazard analysis. These quantities focus on the long term probabilities that units will occupy particular states conditional on their current state, and they are central in the design and implementation of policy interventions.
Publisher: Cambridge University Press
ISBN: 100906231X
Category : Political Science
Languages : en
Pages : 136
Book Description
Quantitative social scientists use survival analysis to understand the forces that determine the duration of events. This Element provides a guideline to new techniques and models in survival analysis, particularly in three areas: non-proportional covariate effects, competing risks, and multi-state models. It also revisits models for repeated events. The Element promotes multi-state models as a unified framework for survival analysis and highlights the role of general transition probabilities as key quantities of interest that complement traditional hazard analysis. These quantities focus on the long term probabilities that units will occupy particular states conditional on their current state, and they are central in the design and implementation of policy interventions.
A Practical Introduction to Regression Discontinuity Designs
Author: Matias D. Cattaneo
Publisher: Cambridge University Press
ISBN: 1009441914
Category : Political Science
Languages : en
Pages : 135
Book Description
In this Element, which continues our discussion in Foundations, the authors provide an accessible and practical guide for the analysis and interpretation of Regression Discontinuity (RD) designs that encourages the use of a common set of practices and facilitates the accumulation of RD-based empirical evidence. The focus is on extensions to the canonical sharp RD setup that we discussed in Foundations. The discussion covers (i) the local randomization framework for RD analysis, (ii) the fuzzy RD design where compliance with treatment is imperfect, (iii) RD designs with discrete scores, and (iv) and multi-dimensional RD designs.
Publisher: Cambridge University Press
ISBN: 1009441914
Category : Political Science
Languages : en
Pages : 135
Book Description
In this Element, which continues our discussion in Foundations, the authors provide an accessible and practical guide for the analysis and interpretation of Regression Discontinuity (RD) designs that encourages the use of a common set of practices and facilitates the accumulation of RD-based empirical evidence. The focus is on extensions to the canonical sharp RD setup that we discussed in Foundations. The discussion covers (i) the local randomization framework for RD analysis, (ii) the fuzzy RD design where compliance with treatment is imperfect, (iii) RD designs with discrete scores, and (iv) and multi-dimensional RD designs.
Interpreting Discrete Choice Models
Author: Garrett Glasgow
Publisher: Cambridge University Press
ISBN: 1108877184
Category : Political Science
Languages : en
Pages : 131
Book Description
In discrete choice models the relationships between the independent variables and the choice probabilities are nonlinear, depending on both the value of the particular independent variable being interpreted and the values of the other independent variables. Thus, interpreting the magnitude of the effects (the “substantive effects”) of the independent variables on choice behavior requires the use of additional interpretative techniques. Three common techniques for interpretation are described here: first differences, marginal effects and elasticities, and odds ratios. Concepts related to these techniques are also discussed, as well as methods to account for estimation uncertainty. Interpretation of binary logits, ordered logits, multinomial and conditional logits, and mixed discrete choice models such as mixed multinomial logits and random effects logits for panel data are covered in detail. The techniques discussed here are general, and can be applied to other models with discrete dependent variables which are not specifically described here.
Publisher: Cambridge University Press
ISBN: 1108877184
Category : Political Science
Languages : en
Pages : 131
Book Description
In discrete choice models the relationships between the independent variables and the choice probabilities are nonlinear, depending on both the value of the particular independent variable being interpreted and the values of the other independent variables. Thus, interpreting the magnitude of the effects (the “substantive effects”) of the independent variables on choice behavior requires the use of additional interpretative techniques. Three common techniques for interpretation are described here: first differences, marginal effects and elasticities, and odds ratios. Concepts related to these techniques are also discussed, as well as methods to account for estimation uncertainty. Interpretation of binary logits, ordered logits, multinomial and conditional logits, and mixed discrete choice models such as mixed multinomial logits and random effects logits for panel data are covered in detail. The techniques discussed here are general, and can be applied to other models with discrete dependent variables which are not specifically described here.
Using Shiny to Teach Econometric Models
Author: Shawna K. Metzger
Publisher: Cambridge University Press
ISBN: 1108879853
Category : Political Science
Languages : en
Pages : 124
Book Description
This Element discusses how shiny, an R package, can help instructors teach quantitative methods more effectively by way of interactive web apps. The interactivity increases instructors' effectiveness by making students more active participants in the learning process, allowing them to engage with otherwise complex material in an accessible, dynamic way. The Element offers four detailed apps that cover two fundamental linear regression topics: estimation methods (least squares, maximum likelihood) and the classic linear regression assumptions. It includes a summary of what the apps can be used to demonstrate, detailed descriptions of the apps' full capabilities, vignettes from actual class use, and example activities. Two other apps pertain to a more advanced topic (LASSO), with similar supporting material. For instructors interested in modifying the apps, the Element also documents the main apps' general code structure, highlights some of the more likely modifications, and goes through what functions need to be amended.
Publisher: Cambridge University Press
ISBN: 1108879853
Category : Political Science
Languages : en
Pages : 124
Book Description
This Element discusses how shiny, an R package, can help instructors teach quantitative methods more effectively by way of interactive web apps. The interactivity increases instructors' effectiveness by making students more active participants in the learning process, allowing them to engage with otherwise complex material in an accessible, dynamic way. The Element offers four detailed apps that cover two fundamental linear regression topics: estimation methods (least squares, maximum likelihood) and the classic linear regression assumptions. It includes a summary of what the apps can be used to demonstrate, detailed descriptions of the apps' full capabilities, vignettes from actual class use, and example activities. Two other apps pertain to a more advanced topic (LASSO), with similar supporting material. For instructors interested in modifying the apps, the Element also documents the main apps' general code structure, highlights some of the more likely modifications, and goes through what functions need to be amended.
Computational Frameworks for Political and Social Research with Python
Author: Josh Cutler
Publisher: Springer Nature
ISBN: 3030368262
Category : Social Science
Languages : en
Pages : 213
Book Description
This book is intended to serve as the basis for a first course in Python programming for graduate students in political science and related fields. The book introduces core concepts of software development and computer science such as basic data structures (e.g. arrays, lists, dictionaries, trees, graphs), algorithms (e.g. sorting), and analysis of computational efficiency. It then demonstrates how to apply these concepts to the field of political science by working with structured and unstructured data, querying databases, and interacting with application programming interfaces (APIs). Students will learn how to collect, manipulate, and exploit large volumes of available data and apply them to political and social research questions. They will also learn best practices from the field of software development such as version control and object-oriented programming. Instructors will be supplied with in-class example code, suggested homework assignments (with solutions), and material for practical lab sessions.
Publisher: Springer Nature
ISBN: 3030368262
Category : Social Science
Languages : en
Pages : 213
Book Description
This book is intended to serve as the basis for a first course in Python programming for graduate students in political science and related fields. The book introduces core concepts of software development and computer science such as basic data structures (e.g. arrays, lists, dictionaries, trees, graphs), algorithms (e.g. sorting), and analysis of computational efficiency. It then demonstrates how to apply these concepts to the field of political science by working with structured and unstructured data, querying databases, and interacting with application programming interfaces (APIs). Students will learn how to collect, manipulate, and exploit large volumes of available data and apply them to political and social research questions. They will also learn best practices from the field of software development such as version control and object-oriented programming. Instructors will be supplied with in-class example code, suggested homework assignments (with solutions), and material for practical lab sessions.
The SAGE Handbook of Research Methods in Political Science and International Relations
Author: Luigi Curini
Publisher: SAGE
ISBN: 1526486393
Category : Political Science
Languages : en
Pages : 1941
Book Description
The SAGE Handbook of Research Methods in Political Science and International Relations offers a comprehensive overview of research processes in social science — from the ideation and design of research projects, through the construction of theoretical arguments, to conceptualization, measurement, & data collection, and quantitative & qualitative empirical analysis — exposited through 65 major new contributions from leading international methodologists. Each chapter surveys, builds upon, and extends the modern state of the art in its area. Following through its six-part organization, undergraduate and graduate students, researchers and practicing academics will be guided through the design, methods, and analysis of issues in Political Science and International Relations: Part One: Formulating Good Research Questions & Designing Good Research Projects Part Two: Methods of Theoretical Argumentation Part Three: Conceptualization & Measurement Part Four: Large-Scale Data Collection & Representation Methods Part Five: Quantitative-Empirical Methods Part Six: Qualitative & "Mixed" Methods
Publisher: SAGE
ISBN: 1526486393
Category : Political Science
Languages : en
Pages : 1941
Book Description
The SAGE Handbook of Research Methods in Political Science and International Relations offers a comprehensive overview of research processes in social science — from the ideation and design of research projects, through the construction of theoretical arguments, to conceptualization, measurement, & data collection, and quantitative & qualitative empirical analysis — exposited through 65 major new contributions from leading international methodologists. Each chapter surveys, builds upon, and extends the modern state of the art in its area. Following through its six-part organization, undergraduate and graduate students, researchers and practicing academics will be guided through the design, methods, and analysis of issues in Political Science and International Relations: Part One: Formulating Good Research Questions & Designing Good Research Projects Part Two: Methods of Theoretical Argumentation Part Three: Conceptualization & Measurement Part Four: Large-Scale Data Collection & Representation Methods Part Five: Quantitative-Empirical Methods Part Six: Qualitative & "Mixed" Methods