Unsupervised Information Extraction by Text Segmentation

Unsupervised Information Extraction by Text Segmentation PDF Author: Eli Cortez
Publisher: Springer Science & Business Media
ISBN: 331902597X
Category : Computers
Languages : en
Pages : 103

Get Book Here

Book Description
A new unsupervised approach to the problem of Information Extraction by Text Segmentation (IETS) is proposed, implemented and evaluated herein. The authors’ approach relies on information available on pre-existing data to learn how to associate segments in the input string with attributes of a given domain relying on a very effective set of content-based features. The effectiveness of the content-based features is also exploited to directly learn from test data structure-based features, with no previous human-driven training, a feature unique to the presented approach. Based on the approach, a number of results are produced to address the IETS problem in an unsupervised fashion. In particular, the authors develop, implement and evaluate distinct IETS methods, namely ONDUX, JUDIE and iForm. ONDUX (On Demand Unsupervised Information Extraction) is an unsupervised probabilistic approach for IETS that relies on content-based features to bootstrap the learning of structure-based features. JUDIE (Joint Unsupervised Structure Discovery and Information Extraction) aims at automatically extracting several semi-structured data records in the form of continuous text and having no explicit delimiters between them. In comparison with other IETS methods, including ONDUX, JUDIE faces a task considerably harder that is, extracting information while simultaneously uncovering the underlying structure of the implicit records containing it. iForm applies the authors’ approach to the task of Web form filling. It aims at extracting segments from a data-rich text given as input and associating these segments with fields from a target Web form. All of these methods were evaluated considering different experimental datasets, which are used to perform a large set of experiments in order to validate the presented approach and methods. These experiments indicate that the proposed approach yields high quality results when compared to state-of-the-art approaches and that it is able to properly support IETS methods in a number of real applications. The findings will prove valuable to practitioners in helping them to understand the current state-of-the-art in unsupervised information extraction techniques, as well as to graduate and undergraduate students of web data management.

Unsupervised Information Extraction by Text Segmentation

Unsupervised Information Extraction by Text Segmentation PDF Author: Eli Cortez
Publisher: Springer Science & Business Media
ISBN: 331902597X
Category : Computers
Languages : en
Pages : 103

Get Book Here

Book Description
A new unsupervised approach to the problem of Information Extraction by Text Segmentation (IETS) is proposed, implemented and evaluated herein. The authors’ approach relies on information available on pre-existing data to learn how to associate segments in the input string with attributes of a given domain relying on a very effective set of content-based features. The effectiveness of the content-based features is also exploited to directly learn from test data structure-based features, with no previous human-driven training, a feature unique to the presented approach. Based on the approach, a number of results are produced to address the IETS problem in an unsupervised fashion. In particular, the authors develop, implement and evaluate distinct IETS methods, namely ONDUX, JUDIE and iForm. ONDUX (On Demand Unsupervised Information Extraction) is an unsupervised probabilistic approach for IETS that relies on content-based features to bootstrap the learning of structure-based features. JUDIE (Joint Unsupervised Structure Discovery and Information Extraction) aims at automatically extracting several semi-structured data records in the form of continuous text and having no explicit delimiters between them. In comparison with other IETS methods, including ONDUX, JUDIE faces a task considerably harder that is, extracting information while simultaneously uncovering the underlying structure of the implicit records containing it. iForm applies the authors’ approach to the task of Web form filling. It aims at extracting segments from a data-rich text given as input and associating these segments with fields from a target Web form. All of these methods were evaluated considering different experimental datasets, which are used to perform a large set of experiments in order to validate the presented approach and methods. These experiments indicate that the proposed approach yields high quality results when compared to state-of-the-art approaches and that it is able to properly support IETS methods in a number of real applications. The findings will prove valuable to practitioners in helping them to understand the current state-of-the-art in unsupervised information extraction techniques, as well as to graduate and undergraduate students of web data management.

Mining Text Data

Mining Text Data PDF Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 1461432235
Category : Computers
Languages : en
Pages : 527

Get Book Here

Book Description
Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.

Machine Learning for Text

Machine Learning for Text PDF Author: Charu C. Aggarwal
Publisher: Springer Nature
ISBN: 3030966232
Category : Computers
Languages : en
Pages : 583

Get Book Here

Book Description
This second edition textbook covers a coherently organized framework for text analytics, which integrates material drawn from the intersecting topics of information retrieval, machine learning, and natural language processing. Particular importance is placed on deep learning methods. The chapters of this book span three broad categories:1. Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for text analytics such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. 2. Domain-sensitive learning and information retrieval: Chapters 8 and 9 discuss learning models in heterogeneous settings such as a combination of text with multimedia or Web links. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. 3. Natural language processing: Chapters 10 through 16 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, transformers, pre-trained language models, text summarization, information extraction, knowledge graphs, question answering, opinion mining, text segmentation, and event detection. Compared to the first edition, this second edition textbook (which targets mostly advanced level students majoring in computer science and math) has substantially more material on deep learning and natural language processing. Significant focus is placed on topics like transformers, pre-trained language models, knowledge graphs, and question answering.

Machine Learning for Text

Machine Learning for Text PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319735314
Category : Computers
Languages : en
Pages : 510

Get Book Here

Book Description
Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories: - Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. - Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. - Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop). This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.

Big Data Integration

Big Data Integration PDF Author: Xin Luna Dong
Publisher: Springer Nature
ISBN: 3031018532
Category : Computers
Languages : en
Pages : 178

Get Book Here

Book Description
The big data era is upon us: data are being generated, analyzed, and used at an unprecedented scale, and data-driven decision making is sweeping through all aspects of society. Since the value of data explodes when it can be linked and fused with other data, addressing the big data integration (BDI) challenge is critical to realizing the promise of big data. BDI differs from traditional data integration along the dimensions of volume, velocity, variety, and veracity. First, not only can data sources contain a huge volume of data, but also the number of data sources is now in the millions. Second, because of the rate at which newly collected data are made available, many of the data sources are very dynamic, and the number of data sources is also rapidly exploding. Third, data sources are extremely heterogeneous in their structure and content, exhibiting considerable variety even for substantially similar entities. Fourth, the data sources are of widely differing qualities, with significant differences in the coverage, accuracy and timeliness of data provided. This book explores the progress that has been made by the data integration community on the topics of schema alignment, record linkage and data fusion in addressing these novel challenges faced by big data integration. Each of these topics is covered in a systematic way: first starting with a quick tour of the topic in the context of traditional data integration, followed by a detailed, example-driven exposition of recent innovative techniques that have been proposed to address the BDI challenges of volume, velocity, variety, and veracity. Finally, it presents merging topics and opportunities that are specific to BDI, identifying promising directions for the data integration community.

SAS Text Analytics for Business Applications

SAS Text Analytics for Business Applications PDF Author: Teresa Jade
Publisher: SAS Institute
ISBN: 1635266610
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
Extract actionable insights from text and unstructured data. Information extraction is the task of automatically extracting structured information from unstructured or semi-structured text. SAS Text Analytics for Business Applications: Concept Rules for Information Extraction Models focuses on this key element of natural language processing (NLP) and provides real-world guidance on the effective application of text analytics. Using scenarios and data based on business cases across many different domains and industries, the book includes many helpful tips and best practices from SAS text analytics experts to ensure fast, valuable insight from your textual data. Written for a broad audience of beginning, intermediate, and advanced users of SAS text analytics products, including SAS Visual Text Analytics, SAS Contextual Analysis, and SAS Enterprise Content Categorization, this book provides a solid technical reference. You will learn the SAS information extraction toolkit, broaden your knowledge of rule-based methods, and answer new business questions. As your practical experience grows, this book will serve as a reference to deepen your expertise.

Introduction to Machine Learning and Natural Language Processing

Introduction to Machine Learning and Natural Language Processing PDF Author: Dr.Kongara Srinivasa Rao
Publisher: Leilani Katie Publication
ISBN: 9363484823
Category : Computers
Languages : en
Pages : 219

Get Book Here

Book Description
Dr.Kongara Srinivasa Rao, Assistant Professor, Department of Computer Science and Engineering, Faculty of Science and Technology (ICFAI Tech), ICFAI Foundation for Higher Education (IFHE), Hyderabad, Telangana, India. Dr.K.Sreeramamurthy, Professor, Department of Computer Science Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad, Telangana, India. Dr.Yaswanth Kumar Alapati, Associate Professor, Department of Information Technology, R.V.R. & J.C. College of Engineering, Guntur, Andhra Pradesh, India.

Web Information Systems Engineering -- WISE 2013

Web Information Systems Engineering -- WISE 2013 PDF Author: Xuemin Lin
Publisher: Springer
ISBN: 3642411541
Category : Computers
Languages : en
Pages : 567

Get Book Here

Book Description
This book constitutes the proceedings of the 14th International Conference on Web Information Systems Engineering, WISE 2013, held in Nanjing, China, in October 2013. The 48 full papers, 29 short papers, and 10 demo and 5 challenge papers, presented in the two-volume proceedings LNCS 8180 and 8181, were carefully reviewed and selected from 198 submissions. They are organized in topical sections named: Web mining; Web recommendation; Web services; data engineering and database; semi-structured data and modeling; Web data integration and hidden Web; challenge; social Web; information extraction and multilingual management; networks, graphs and Web-based business processes; event processing, Web monitoring and management; and innovative techniques and creations.

Computational Linguistics and Intelligent Text Processing

Computational Linguistics and Intelligent Text Processing PDF Author: Alexander Gelbukh
Publisher: Springer
ISBN: 3642194001
Category : Computers
Languages : en
Pages : 486

Get Book Here

Book Description
This two-volume set, consisting of LNCS 6608 and LNCS 6609, constitutes the thoroughly refereed proceedings of the 12th International Conference on Computer Linguistics and Intelligent Processing, held in Tokyo, Japan, in February 2011. The 74 full papers, presented together with 4 invited papers, were carefully reviewed and selected from 298 submissions. The contents have been ordered according to the following topical sections: lexical resources; syntax and parsing; part-of-speech tagging and morphology; word sense disambiguation; semantics and discourse; opinion mining and sentiment detection; text generation; machine translation and multilingualism; information extraction and information retrieval; text categorization and classification; summarization and recognizing textual entailment; authoring aid, error correction, and style analysis; and speech recognition and generation.

Machine Learning Forensics for Law Enforcement, Security, and Intelligence

Machine Learning Forensics for Law Enforcement, Security, and Intelligence PDF Author: Jesus Mena
Publisher: CRC Press
ISBN: 143986070X
Category : Computers
Languages : en
Pages : 349

Get Book Here

Book Description
Increasingly, crimes and fraud are digital in nature, occurring at breakneck speed and encompassing large volumes of data. To combat this unlawful activity, knowledge about the use of machine learning technology and software is critical. Machine Learning Forensics for Law Enforcement, Security, and Intelligence integrates an assortment of deductive