Author: P Cvitanovic
Publisher: Routledge
ISBN: 1351406035
Category : Science
Languages : en
Pages : 911
Book Description
Nature provides many examples of physical systems that are described by deterministic equations of motion, but that nevertheless exhibit nonpredictable behavior. The detailed description of turbulent motions remains perhaps the outstanding unsolved problem of classical physics. In recent years, however, a new theory has been formulated that succeeds in making quantitative predictions describing certain transitions to turbulence. Its significance lies in its possible application to large classes (often very dissimilar) of nonlinear systems. Since the publication of Universality in Chaos in 1984, progress has continued to be made in our understanding of nonlinear dynamical systems and chaos. This second edition extends the collection of articles to cover recent developments in the field, including the use of statistical mechanics techniques in the study of strange sets arising in dynamics. It concentrates on the universal aspects of chaotic motions, the qualitative and quantitative predictions that apply to large classes of physical systems. Much like the previous edition, this book will be an indispensable reference for researchers and graduate students interested in chaotic dynamics in the physical, biological, and mathematical sciences as well as engineering.
Universality in Chaos, 2nd edition
Author: P Cvitanovic
Publisher: Routledge
ISBN: 1351406035
Category : Science
Languages : en
Pages : 911
Book Description
Nature provides many examples of physical systems that are described by deterministic equations of motion, but that nevertheless exhibit nonpredictable behavior. The detailed description of turbulent motions remains perhaps the outstanding unsolved problem of classical physics. In recent years, however, a new theory has been formulated that succeeds in making quantitative predictions describing certain transitions to turbulence. Its significance lies in its possible application to large classes (often very dissimilar) of nonlinear systems. Since the publication of Universality in Chaos in 1984, progress has continued to be made in our understanding of nonlinear dynamical systems and chaos. This second edition extends the collection of articles to cover recent developments in the field, including the use of statistical mechanics techniques in the study of strange sets arising in dynamics. It concentrates on the universal aspects of chaotic motions, the qualitative and quantitative predictions that apply to large classes of physical systems. Much like the previous edition, this book will be an indispensable reference for researchers and graduate students interested in chaotic dynamics in the physical, biological, and mathematical sciences as well as engineering.
Publisher: Routledge
ISBN: 1351406035
Category : Science
Languages : en
Pages : 911
Book Description
Nature provides many examples of physical systems that are described by deterministic equations of motion, but that nevertheless exhibit nonpredictable behavior. The detailed description of turbulent motions remains perhaps the outstanding unsolved problem of classical physics. In recent years, however, a new theory has been formulated that succeeds in making quantitative predictions describing certain transitions to turbulence. Its significance lies in its possible application to large classes (often very dissimilar) of nonlinear systems. Since the publication of Universality in Chaos in 1984, progress has continued to be made in our understanding of nonlinear dynamical systems and chaos. This second edition extends the collection of articles to cover recent developments in the field, including the use of statistical mechanics techniques in the study of strange sets arising in dynamics. It concentrates on the universal aspects of chaotic motions, the qualitative and quantitative predictions that apply to large classes of physical systems. Much like the previous edition, this book will be an indispensable reference for researchers and graduate students interested in chaotic dynamics in the physical, biological, and mathematical sciences as well as engineering.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Deterministic Chaos
Author: Heinz Georg Schuster
Publisher: Jacaranda
ISBN:
Category : Science
Languages : en
Pages : 304
Book Description
Publisher: Jacaranda
ISBN:
Category : Science
Languages : en
Pages : 304
Book Description
Nonlinear Dynamics and Chaos with Student Solutions Manual
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429680155
Category : Mathematics
Languages : en
Pages : 859
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429680155
Category : Mathematics
Languages : en
Pages : 859
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429972199
Category : Mathematics
Languages : en
Pages : 533
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429972199
Category : Mathematics
Languages : en
Pages : 533
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Chaos Applications in Telecommunications
Author: Peter Stavroulakis
Publisher: CRC Press
ISBN: 0203025318
Category : Computers
Languages : en
Pages : 444
Book Description
The concept of transmitting information from one chaotic system to another derives from the observation of the synchronization of two chaotic systems. Having developed two chaotic systems that can be synchronized, scientists can modulate on one phase signal the information to be transmitted, and subtract (demodulate) the information from the corres
Publisher: CRC Press
ISBN: 0203025318
Category : Computers
Languages : en
Pages : 444
Book Description
The concept of transmitting information from one chaotic system to another derives from the observation of the synchronization of two chaotic systems. Having developed two chaotic systems that can be synchronized, scientists can modulate on one phase signal the information to be transmitted, and subtract (demodulate) the information from the corres
Nonlinear Waves, Solitons and Chaos
Author: Eryk Infeld
Publisher: Cambridge University Press
ISBN: 9780521635578
Category : Mathematics
Languages : en
Pages : 416
Book Description
The second edition of a highly successful book on nonlinear waves, solitons and chaos.
Publisher: Cambridge University Press
ISBN: 9780521635578
Category : Mathematics
Languages : en
Pages : 416
Book Description
The second edition of a highly successful book on nonlinear waves, solitons and chaos.
Applied Symbolic Dynamics And Chaos (Second Edition)
Author: Hao Bailin
Publisher: World Scientific
ISBN: 9813236442
Category : Science
Languages : en
Pages : 520
Book Description
Symbolic dynamics is a coarse-grained description of dynamics. It has been a long-studied chapter of the mathematical theory of dynamical systems, but its abstract formulation has kept many practitioners of physical sciences and engineering from appreciating its simplicity, beauty, and power. At the same time, symbolic dynamics provides almost the only rigorous way to understand global systematics of periodic and, especially, chaotic motion in dynamical systems. In a sense, everyone who enters the field of chaotic dynamics should begin with the study of symbolic dynamics. However, this has not been an easy task for non-mathematicians. On one hand, the method of symbolic dynamics has been developed to such an extent that it may well become a practical tool in studying chaotic dynamics, both on computers and in laboratories. On the other hand, most of the existing literature on symbolic dynamics is mathematics-oriented. This book is an attempt at partially filling up this apparent gap by emphasizing the applied aspects of symbolic dynamics without mathematical rigor. Contents: Preface to the Second Edition Preface to the First Edition Introduction Symbolic Dynamics of Unimodal Maps Maps with Multiple Critical Points Symbolic Dynamics of Circle Maps Symbolic Dynamics of Two-Dimensional Maps Application to Ordinary Differential Equations Counting the Number of Periodic Orbits Symbolic Dynamics and Grammatical Complexity Symbolic Dynamics and Knot Theory Appendix References Index Readership: Researchers and students interested in chaotic dynamics. Keywords: Symbolic Dynamics;ChaosReview: Key Features: No previous knowledge of dynamical systems theory is required in order to read this book The revisions concern mainly the application to ordinary differential equations via constructing two-dimensional symbolic dynamics of the corresponding Poincare maps
Publisher: World Scientific
ISBN: 9813236442
Category : Science
Languages : en
Pages : 520
Book Description
Symbolic dynamics is a coarse-grained description of dynamics. It has been a long-studied chapter of the mathematical theory of dynamical systems, but its abstract formulation has kept many practitioners of physical sciences and engineering from appreciating its simplicity, beauty, and power. At the same time, symbolic dynamics provides almost the only rigorous way to understand global systematics of periodic and, especially, chaotic motion in dynamical systems. In a sense, everyone who enters the field of chaotic dynamics should begin with the study of symbolic dynamics. However, this has not been an easy task for non-mathematicians. On one hand, the method of symbolic dynamics has been developed to such an extent that it may well become a practical tool in studying chaotic dynamics, both on computers and in laboratories. On the other hand, most of the existing literature on symbolic dynamics is mathematics-oriented. This book is an attempt at partially filling up this apparent gap by emphasizing the applied aspects of symbolic dynamics without mathematical rigor. Contents: Preface to the Second Edition Preface to the First Edition Introduction Symbolic Dynamics of Unimodal Maps Maps with Multiple Critical Points Symbolic Dynamics of Circle Maps Symbolic Dynamics of Two-Dimensional Maps Application to Ordinary Differential Equations Counting the Number of Periodic Orbits Symbolic Dynamics and Grammatical Complexity Symbolic Dynamics and Knot Theory Appendix References Index Readership: Researchers and students interested in chaotic dynamics. Keywords: Symbolic Dynamics;ChaosReview: Key Features: No previous knowledge of dynamical systems theory is required in order to read this book The revisions concern mainly the application to ordinary differential equations via constructing two-dimensional symbolic dynamics of the corresponding Poincare maps
Introduction to Modern Dynamics
Author: D. D. Nolte
Publisher:
ISBN: 019884462X
Category : Science
Languages : en
Pages : 498
Book Description
Presents a unifying approach to the physics of chaos, nonlinear systems, dynamic networks, evolutionary dynamics, econophysics, and the theory of relativity. Each chapter has many worked examples and simple computer simulations that allow the student to explore the rich phenomena of nonlinear physics.
Publisher:
ISBN: 019884462X
Category : Science
Languages : en
Pages : 498
Book Description
Presents a unifying approach to the physics of chaos, nonlinear systems, dynamic networks, evolutionary dynamics, econophysics, and the theory of relativity. Each chapter has many worked examples and simple computer simulations that allow the student to explore the rich phenomena of nonlinear physics.
Student Solutions Manual for Nonlinear Dynamics and Chaos, 2nd edition
Author: Mitchal Dichter
Publisher: CRC Press
ISBN: 0429972636
Category : Mathematics
Languages : en
Pages : 500
Book Description
This official Student Solutions Manual includes solutions to the odd-numbered exercises featured in the second edition of Steven Strogatz's classic text Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. The textbook and accompanying Student Solutions Manual are aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. Complete with graphs and worked-out solutions, this manual demonstrates techniques for students to analyze differential equations, bifurcations, chaos, fractals, and other subjects Strogatz explores in his popular book.
Publisher: CRC Press
ISBN: 0429972636
Category : Mathematics
Languages : en
Pages : 500
Book Description
This official Student Solutions Manual includes solutions to the odd-numbered exercises featured in the second edition of Steven Strogatz's classic text Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. The textbook and accompanying Student Solutions Manual are aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. Complete with graphs and worked-out solutions, this manual demonstrates techniques for students to analyze differential equations, bifurcations, chaos, fractals, and other subjects Strogatz explores in his popular book.