Author: B. Boates
Publisher: Solid State Press
ISBN: 1938189000
Category : Education
Languages : en
Pages : 26
Book Description
Understanding Math - Introduction to Matrices
Author: B. Boates
Publisher: Solid State Press
ISBN: 1938189000
Category : Education
Languages : en
Pages : 26
Book Description
Publisher: Solid State Press
ISBN: 1938189000
Category : Education
Languages : en
Pages : 26
Book Description
Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Introduction to Linear Algebra
Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
ISBN: 9780980232714
Category : Mathematics
Languages : en
Pages : 585
Book Description
This leading textbook for first courses in linear algebra comes from the hugely experienced MIT lecturer and author Gilbert Strang. The book's tried and tested approach is direct, offering practical explanations and examples, while showing the beauty and variety of the subject. Unlike most other linear algebra textbooks, the approach is not a repetitive drill. Instead it inspires an understanding of real mathematics. The book moves gradually and naturally from numbers to vectors to the four fundamental subspaces. This new edition includes challenge problems at the end of each section. Preview five complete sections at math.mit.edu/linearalgebra. Readers can also view freely available online videos of Gilbert Strang's 18.06 linear algebra course at MIT, via OpenCourseWare (ocw.mit.edu), that have been watched by over a million viewers. Also on the web (http://web.mit.edu/18.06/www/), readers will find years of MIT exam questions, MATLAB help files and problem sets to practise what they have learned.
Publisher: Wellesley-Cambridge Press
ISBN: 9780980232714
Category : Mathematics
Languages : en
Pages : 585
Book Description
This leading textbook for first courses in linear algebra comes from the hugely experienced MIT lecturer and author Gilbert Strang. The book's tried and tested approach is direct, offering practical explanations and examples, while showing the beauty and variety of the subject. Unlike most other linear algebra textbooks, the approach is not a repetitive drill. Instead it inspires an understanding of real mathematics. The book moves gradually and naturally from numbers to vectors to the four fundamental subspaces. This new edition includes challenge problems at the end of each section. Preview five complete sections at math.mit.edu/linearalgebra. Readers can also view freely available online videos of Gilbert Strang's 18.06 linear algebra course at MIT, via OpenCourseWare (ocw.mit.edu), that have been watched by over a million viewers. Also on the web (http://web.mit.edu/18.06/www/), readers will find years of MIT exam questions, MATLAB help files and problem sets to practise what they have learned.
Linear Algebra Done Right
Author: Sheldon Axler
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Introduction to Linear and Matrix Algebra
Author: Nathaniel Johnston
Publisher: Springer Nature
ISBN: 3030528111
Category : Mathematics
Languages : en
Pages : 482
Book Description
This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.
Publisher: Springer Nature
ISBN: 3030528111
Category : Mathematics
Languages : en
Pages : 482
Book Description
This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.
Matrices and Transformations
Author: Anthony J. Pettofrezzo
Publisher: Courier Corporation
ISBN: 9780486636344
Category : Mathematics
Languages : en
Pages : 146
Book Description
This book presents an elementary and concrete approach to linear algebra that is both useful and essential for the beginning student and teacher of mathematics. Here are the fundamental concepts of matrix algebra, first in an intuitive framework and then in a more formal manner. A Variety of interpretations and applications of the elements and operations considered are included. In particular, the use of matrices in the study of transformations of the plane is stressed. The purpose of this book is to familiarize the reader with the role of matrices in abstract algebraic systems, and to illustrate its effective use as a mathematical tool in geometry. The first two chapters cover the basic concepts of matrix algebra that are important in the study of physics, statistics, economics, engineering, and mathematics. Matrices are considered as elements of an algebra. The concept of a linear transformation of the plane and the use of matrices in discussing such transformations are illustrated in Chapter #. Some aspects of the algebra of transformations and its relation to the algebra of matrices are included here. The last chapter on eigenvalues and eigenvectors contains material usually not found in an introductory treatment of matrix algebra, including an application of the properties of eigenvalues and eigenvectors to the study of the conics. Considerable attention has been paid throughout to the formulation of precise definitions and statements of theorems. The proofs of most of the theorems are included in detail in this book. Matrices and Transformations assumes only that the reader has some understanding of the basic fundamentals of vector algebra. Pettofrezzo gives numerous illustrative examples, practical applications, and intuitive analogies. There are many instructive exercises with answers to the odd-numbered questions at the back. The exercises range from routine computations to proofs of theorems that extend the theory of the subject. Originally written for a series concerned with the mathematical training of teachers, and tested with hundreds of college students, this book can be used as a class or supplementary text for enrichments programs at the high school level, a one-semester college course, individual study, or for in-service programs.
Publisher: Courier Corporation
ISBN: 9780486636344
Category : Mathematics
Languages : en
Pages : 146
Book Description
This book presents an elementary and concrete approach to linear algebra that is both useful and essential for the beginning student and teacher of mathematics. Here are the fundamental concepts of matrix algebra, first in an intuitive framework and then in a more formal manner. A Variety of interpretations and applications of the elements and operations considered are included. In particular, the use of matrices in the study of transformations of the plane is stressed. The purpose of this book is to familiarize the reader with the role of matrices in abstract algebraic systems, and to illustrate its effective use as a mathematical tool in geometry. The first two chapters cover the basic concepts of matrix algebra that are important in the study of physics, statistics, economics, engineering, and mathematics. Matrices are considered as elements of an algebra. The concept of a linear transformation of the plane and the use of matrices in discussing such transformations are illustrated in Chapter #. Some aspects of the algebra of transformations and its relation to the algebra of matrices are included here. The last chapter on eigenvalues and eigenvectors contains material usually not found in an introductory treatment of matrix algebra, including an application of the properties of eigenvalues and eigenvectors to the study of the conics. Considerable attention has been paid throughout to the formulation of precise definitions and statements of theorems. The proofs of most of the theorems are included in detail in this book. Matrices and Transformations assumes only that the reader has some understanding of the basic fundamentals of vector algebra. Pettofrezzo gives numerous illustrative examples, practical applications, and intuitive analogies. There are many instructive exercises with answers to the odd-numbered questions at the back. The exercises range from routine computations to proofs of theorems that extend the theory of the subject. Originally written for a series concerned with the mathematical training of teachers, and tested with hundreds of college students, this book can be used as a class or supplementary text for enrichments programs at the high school level, a one-semester college course, individual study, or for in-service programs.
An Introduction to Random Matrices
Author: Greg W. Anderson
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507
Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507
Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Introduction to Matrix Computations
Author: G. W. Stewart
Publisher: Elsevier
ISBN: 0080926142
Category : Mathematics
Languages : en
Pages : 457
Book Description
Numerical linear algebra is far too broad a subject to treat in a single introductory volume. Stewart has chosen to treat algorithms for solving linear systems, linear least squares problems, and eigenvalue problems involving matrices whose elements can all be contained in the high-speed storage of a computer. By way of theory, the author has chosen to discuss the theory of norms and perturbation theory for linear systems and for the algebraic eigenvalue problem. These choices exclude, among other things, the solution of large sparse linear systems by direct and iterative methods, linear programming, and the useful Perron-Frobenious theory and its extensions. However, a person who has fully mastered the material in this book should be well prepared for independent study in other areas of numerical linear algebra.
Publisher: Elsevier
ISBN: 0080926142
Category : Mathematics
Languages : en
Pages : 457
Book Description
Numerical linear algebra is far too broad a subject to treat in a single introductory volume. Stewart has chosen to treat algorithms for solving linear systems, linear least squares problems, and eigenvalue problems involving matrices whose elements can all be contained in the high-speed storage of a computer. By way of theory, the author has chosen to discuss the theory of norms and perturbation theory for linear systems and for the algebraic eigenvalue problem. These choices exclude, among other things, the solution of large sparse linear systems by direct and iterative methods, linear programming, and the useful Perron-Frobenious theory and its extensions. However, a person who has fully mastered the material in this book should be well prepared for independent study in other areas of numerical linear algebra.
Linear Algebra
Author: Alan Tucker
Publisher: Macmillan College
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
Covers the fundamental role of linear algebra with both pure and applied mathematics as well as client disciplines such as engineering, the physical sciences and economics. This text examines the interrelationships amongst theory, computation and applications.
Publisher: Macmillan College
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
Covers the fundamental role of linear algebra with both pure and applied mathematics as well as client disciplines such as engineering, the physical sciences and economics. This text examines the interrelationships amongst theory, computation and applications.
Linear Algebra As An Introduction To Abstract Mathematics
Author: Bruno Nachtergaele
Publisher: World Scientific Publishing Company
ISBN: 9814723797
Category : Mathematics
Languages : en
Pages : 209
Book Description
This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
Publisher: World Scientific Publishing Company
ISBN: 9814723797
Category : Mathematics
Languages : en
Pages : 209
Book Description
This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.