Uncultivated Microorganisms

Uncultivated Microorganisms PDF Author: Slava S. Epstein
Publisher: Springer Science & Business Media
ISBN: 3540854657
Category : Medical
Languages : en
Pages : 215

Get Book Here

Book Description
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).

Uncultivated Microorganisms

Uncultivated Microorganisms PDF Author: Slava S. Epstein
Publisher: Springer Science & Business Media
ISBN: 3540854657
Category : Medical
Languages : en
Pages : 215

Get Book Here

Book Description
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).

The Chemistry of Microbiomes

The Chemistry of Microbiomes PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309458390
Category : Science
Languages : en
Pages : 133

Get Book Here

Book Description
The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.

Size Limits of Very Small Microorganisms

Size Limits of Very Small Microorganisms PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309172748
Category : Science
Languages : en
Pages : 171

Get Book Here

Book Description
How small can a free-living organism be? On the surface, this question is straightforward-in principle, the smallest cells can be identified and measured. But understanding what factors determine this lower limit, and addressing the host of other questions that follow on from this knowledge, require a fundamental understanding of the chemistry and ecology of cellular life. The recent report of evidence for life in a martian meteorite and the prospect of searching for biological signatures in intelligently chosen samples from Mars and elsewhere bring a new immediacy to such questions. How do we recognize the morphological or chemical remnants of life in rocks deposited 4 billion years ago on another planet? Are the empirical limits on cell size identified by observation on Earth applicable to life wherever it may occur, or is minimum size a function of the particular chemistry of an individual planetary surface? These questions formed the focus of a workshop on the size limits of very small organisms, organized by the Steering .Group for the Workshop on Size Limits of Very Small Microorganisms and held on October 22 and 23, 1998. Eighteen invited panelists, representing fields ranging from cell biology and molecular genetics to paleontology and mineralogy, joined with an almost equal number of other participants in a wide-ranging exploration of minimum cell size and the challenge of interpreting micro- and nano-scale features of sedimentary rocks found on Earth or elsewhere in the solar system. This document contains the proceedings of that workshop. It includes position papers presented by the individual panelists, arranged by panel, along with a summary, for each of the four sessions, of extensive roundtable discussions that involved the panelists as well as other workshop participants.

Microbial Evolution and Co-Adaptation

Microbial Evolution and Co-Adaptation PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309131219
Category : Science
Languages : en
Pages : 330

Get Book Here

Book Description
Dr. Joshua Lederberg - scientist, Nobel laureate, visionary thinker, and friend of the Forum on Microbial Threats - died on February 2, 2008. It was in his honor that the Institute of Medicine's Forum on Microbial Threats convened a public workshop on May 20-21, 2008, to examine Dr. Lederberg's scientific and policy contributions to the marketplace of ideas in the life sciences, medicine, and public policy. The resulting workshop summary, Microbial Evolution and Co-Adaptation, demonstrates the extent to which conceptual and technological developments have, within a few short years, advanced our collective understanding of the microbiome, microbial genetics, microbial communities, and microbe-host-environment interactions.

Accessing Uncultivated Microorganisms

Accessing Uncultivated Microorganisms PDF Author: Karsten Zengler
Publisher:
ISBN: 9781555814069
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description
Providing a comprehensive overview and discussing developments in the field, this book details various innovative methods used in microbial ecology and environmental microbiology. It also includes all aspects of microbial diversity from bacteria and fungi to protists.

Environmental Genomics

Environmental Genomics PDF Author: C. Cristofre Martin
Publisher: Springer Science & Business Media
ISBN: 1588297772
Category : Science
Languages : en
Pages : 363

Get Book Here

Book Description
Here is a manual for an environmental scientist who wishes to embrace genomics to answer environmental questions. The volume covers: gene expression profiling, whole genome and chromosome mutation detection, and methods to assay genome diversity and polymorphisms within a particular environment. This book provides a systematic framework for determining environmental impact and ensuring human health and the sustainability of natural populations.

Microbes in Land Use Change Management

Microbes in Land Use Change Management PDF Author: Jay Shankar Singh
Publisher: Elsevier
ISBN: 0323858945
Category : Science
Languages : en
Pages : 611

Get Book Here

Book Description
Microbes in Land Use Change Management details the various roles of microbial resources in management of land uses and how the microbes can be used for the source of income due to their cultivation for the purpose of biomass and bioenergy production. Using various techniques, the disturbed and marginal lands may also be restored eco-friendly in present era to fulfil the feeding needs of mankind around the globe. Microbes in Land Use Change Management provides standard and up to date information towards the land use change management using various microbial technologies to enhance the productivity of agriculture. Needless to say that Microbes in Land Use Change Management also considers the areas including generation of alternative energy sources, restoration of degraded and marginal lands, mitigation of global warming gases and next generation -omics technique etc. Land use change affects environment conditions and soil microbial community. Microbial population and its species diversity have influence in maintaining ecosystem balance. The study of changes of microbial population provides an idea about the variation occurring in a specific area and possibilities of restoration. Meant for a multidisciplinary audience Microbes in Land Use Change Management shows the need of next-generation omics technologies to explore microbial diversity. - Describes the role of microbes in generation of alternative source of energy - Gives recent information related to various microbial technology and their diversified applications - Provides thorough insight in the problems related to landscape dynamics, restoration of soil, reclamation of lands mitigation of global warming gases etc. eco-friendly way using versatility of microbes - Includes microbial tools and technology in reclamation of degraded, disturbed and marginal lands, mitigation of global warming gases

The Impact of Microorganisms on Consumption of Atmospheric Trace Gases

The Impact of Microorganisms on Consumption of Atmospheric Trace Gases PDF Author: Steffen Kolb
Publisher: Frontiers Media SA
ISBN: 288945326X
Category :
Languages : en
Pages : 203

Get Book Here

Book Description
Gases with a mixing ratio of less than one percent in the lower atmosphere (i.e. the troposphere) are considered as trace gases. Numerous of these trace gases originate from biological processes in marine and terrestrial ecosystems. These gases are of relevance for the climate as they contribute to global warming or to the troposphere’s chemical reactive system that builds the ozone layer or they impact on the stability of aerosols, greenhouse, and pollutant gases. These reactive trace gases include methane, a multitude of volatile organic compounds of biogenic origin (bVOCs) and inorganic gases such as nitrogen oxides or ozone. The regulatory function of microorganisms for trace gas cycling has been intensively studied for the greenhouse gases nitrous oxide and methane, but is less well understood for microorganisms that metabolize molecular hydrogen, carbon monoxide, or bVOCs. The studies compiled this Research Topic reflect this very well. While a number of articles focus on nitrous oxide and methane or carbon monoxide oxidation, only a few articles address conversion processes of further bVOCs. The Research Topic is complemented by three review articles about the consumption of methane and monoterpenes, as well as the role of the phyllosphere as a particular habitat for trace gas-consuming microorganisms, and point out future research directions in the field. The presented scientific work illustrates that the field of microbial regulation of trace glas fluxes is still in its infancy when one broadens the view on gases beyond methane and nitrous oxide. However, there is a societal need to better predict global dynamics of trace gases that impact on the functionality and warming of the troposphere. Upcoming modelling approaches will need further information on process rates, features and distribution of the driving microorganisms to fullfill this demanding task.

Advances in Microbial Ecology

Advances in Microbial Ecology PDF Author: K.C. Marshall
Publisher: Springer Science & Business Media
ISBN: 1468476092
Category : Medical
Languages : en
Pages : 554

Get Book Here

Book Description
Advances in Microbial Ecology was established by the International Committee on Microbial Ecology (ICOME) to provide a vehicle for in-depth, critical, and even provocative reviews to emphasize recent trends in the important field of microbial ecology. Advances in Microbial Ecology is now recognized as a major source of infor mation and inspiration both for practicing and for prospective microbial ecologists. Most reviews appearing in Advances have been prepared by leaders in particular areas follow ing invitations issued by the Editorial Board. Individuals are encouraged, however, to submit outlines of unsolicited contributions to any member of the Editorial Board for consideration for publication in Advances. With the publication of Volume 12 of Advances in Microbial Ecology there will be a change of Editor and the entire Editorial Board. The current Editor wishes to take this opportunity to thank the present Editorial Board, Ron Atlas, Bo Barker J~rgensen, and Gwyn Jones, as well as past members of the Board, for their assistance and encourage ment over the years. The new Editor of Advances in Microbial Ecology will be Gwyn Jones, with Bernhard Schink, Warwick F. Vincent, and David M. Ward as members of the Editorial Board. The outgoing Board wish the new Board every success in continu ing the traditions established by Martin Alexander, the founding Editor of Advances in Microbial Ecology. The topics featured in Volume 12 of Advances include some related to the meta bolic activities of bacteria; namely, bioremediation of oil spills, by R. M. Atlas and R.

The Quest for a Universal Theory of Life

The Quest for a Universal Theory of Life PDF Author: Carol E. Cleland
Publisher: Cambridge University Press
ISBN: 052187324X
Category : Science
Languages : en
Pages : 261

Get Book Here

Book Description
Explores fundamental philosophical and scientific questions about the nature of life, particularly in relation to the search for extraterrestrial life.