Unconventional Thin Film Photovoltaics

Unconventional Thin Film Photovoltaics PDF Author: Enrico Da Como
Publisher: Royal Society of Chemistry
ISBN: 1782624066
Category : Technology & Engineering
Languages : en
Pages : 486

Get Book

Book Description
Covering both organic materials, where recent advances in the understanding of device physics is driving progress, and the newly emerging field of mixed halide perovskites, which are challenging the efficiencies of conventional thin film PV cells, this book provides a balanced overview of the experimental and theoretical aspects of these two classes of solar cell. The book explores both the experimental and theoretical aspects of these solar cell classes. Emphasis is placed on understanding the fundamental physics of the devices. The book also discusses modelling over many length scales, from nano to macro. The first book to cover perovskites, this is an important reference for industrialists and researchers working in energy technologies and materials.

Unconventional Thin Film Photovoltaics

Unconventional Thin Film Photovoltaics PDF Author: Enrico Da Como
Publisher: Royal Society of Chemistry
ISBN: 1782624066
Category : Technology & Engineering
Languages : en
Pages : 486

Get Book

Book Description
Covering both organic materials, where recent advances in the understanding of device physics is driving progress, and the newly emerging field of mixed halide perovskites, which are challenging the efficiencies of conventional thin film PV cells, this book provides a balanced overview of the experimental and theoretical aspects of these two classes of solar cell. The book explores both the experimental and theoretical aspects of these solar cell classes. Emphasis is placed on understanding the fundamental physics of the devices. The book also discusses modelling over many length scales, from nano to macro. The first book to cover perovskites, this is an important reference for industrialists and researchers working in energy technologies and materials.

Thin Film Solar Cells

Thin Film Solar Cells PDF Author: K. L. Chopra
Publisher: Springer Science & Business Media
ISBN: 1489904182
Category : Science
Languages : en
Pages : 615

Get Book

Book Description
"You, 0 Sun, are the eye of the world You are the soul of all embodied beings You are the source of all creatures You are the discipline of all engaged in work" - Translated from Mahabharata 3rd Century BC Today, energy is the lifeline and status symbol of "civilized" societies. All nations have therefore embarked upon Research and Development pro grams of varying magnitudes to explore and effectively utilize renewable sources of energy. Albeit a low-grade energy with large temporal and spatial variations, solar energy is abundant, cheap, clean, and renewable, and thus presents a very attractive alternative source. The direct conver sion of solar energy to electricity (photovoltaic effect) via devices called solar cells has already become an established frontier area of science and technology. Born out of necessity for remote area applications, the first commercially manufactured solar cells - single-crystal silicon and thin film CdS/Cu2S - were available well over 20 years ago. Indeed, all space vehicles today are powered by silicon solar cells. But large-scale terrestrial applications of solar cells still await major breakthroughs in terms of discovering new and radical concepts in solar cell device structures, utilizing relatively more abundant, cheap, and even exotic materials, and inventing simpler and less energy intensive fabrication processes. No doubt, this extraordinary challenge in R/D has led to a virtual explosion of activities in the field of photovoltaics in the last several years.

Thin Films Photovoltaics

Thin Films Photovoltaics PDF Author: Beddiaf Zaidi
Publisher: BoD – Books on Demand
ISBN: 1839699051
Category : Technology & Engineering
Languages : en
Pages : 114

Get Book

Book Description
Thin film photovoltaic-based solar modules produce power at a low cost per watt. They are ideal candidates for large-scale solar farms as well as building-integrated photovoltaic applications. They can generate consistent power, not only at elevated temperatures but also on cloudy, overcast days and at low sun angles.Thin film photovoltaics are second-generation solar cells produced by depositing one or more thin layers, or thin films, of photosensitive material on a suitable substrate such as glass, polymer, or metal. Thin film solar cells are based on various materials such as cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin film silicon (a-Si, TF-Si) are commercially used in several conventional and advanced technologies.

Thin Film Solar Cells

Thin Film Solar Cells PDF Author: Jef Poortmans
Publisher: John Wiley & Sons
ISBN: 9780470091272
Category : Science
Languages : en
Pages : 502

Get Book

Book Description
Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Encyclopedia of Alternative and Renewable Energy: Volume 25 (Advanced Thin Film Solar Cell Techniques)

Encyclopedia of Alternative and Renewable Energy: Volume 25 (Advanced Thin Film Solar Cell Techniques) PDF Author: Terence Maran
Publisher:
ISBN: 9781632391995
Category :
Languages : en
Pages : 0

Get Book

Book Description
This is an advanced book on thin film solar cell techniques. This technique uses direct-gap semiconductors such as CIGS and CdTe pose minimum manufacturing costs and is now increasing in popularity amongst industries. The field of photovoltaics has seen a large-scale manufacturing of the second genesis of thin film solar modules and has succeeded in constructing powerful solar plants in many countries across the globe. This has led to an increase in the manufacturability of thin film solar modules as compared to wafer or ribbon Si modules. Thin films like CIGS and CdTe will soon take over wafer-based silicon solar cells as the superior photovoltaic technology. This book elucidates the scientific and technological difficulties of increasing the photoelectric efficiency of thin film solar cells. It covers various aspects of thin film solar cells processing, modeling and sensitive issues, analysis of monograin layer solar cell etc. The book will be beneficial for readers interested in this subject.

Encyclopedia of Alternative and Renewable Energy: Volume 24 (Thin Film Solar Cells)

Encyclopedia of Alternative and Renewable Energy: Volume 24 (Thin Film Solar Cells) PDF Author: Terence Maran
Publisher:
ISBN: 9781632391988
Category :
Languages : en
Pages : 0

Get Book

Book Description
This book discusses the benefits and challenges of utilizing thin film solar cells as an alternative energy source. The field of photovoltaics has seen a large-scale manufacturing of the second genesis of thin film solar modules and has succeeded in constructing powerful solar plants in many countries across the globe. Thin film techniques using direct-gap semiconductors such as CIGS and CdTe pose minimum manufacturing costs and are now increasing in popularity amongst industries. This has led to an increase in the manufacturability of thin film solar modules as compared to wafer or ribbon Si modules. Thin films like CIGS and CdTe will soon take over wafer-based silicon solar cells as the superior photovoltaic technology. This book elucidates the scientific and technological difficulties of increasing the photoelectric efficiency of thin film solar cells. It covers various aspects of thin film solar cells varying from photovoltaics as mainstream power engineering to low cost solar cell based on cuprous oxides to application of electron beam treatment. This book will be beneficial for readers interested in this subject.

Thin Film Solar Cells From Earth Abundant Materials

Thin Film Solar Cells From Earth Abundant Materials PDF Author: Subba Ramaiah Kodigala
Publisher: Newnes
ISBN: 0123971829
Category : Technology & Engineering
Languages : en
Pages : 190

Get Book

Book Description
The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. One of the first books exploring how to conduct research on thin film solar cells, including reducing costs Detailed instructions on conducting research

Advances in Thin-Film Solar Cells

Advances in Thin-Film Solar Cells PDF Author: I. M. Dharmadasa
Publisher: CRC Press
ISBN: 0429668392
Category : Science
Languages : en
Pages : 286

Get Book

Book Description
Solar energy conversion plays a very important role in the rapid introduction of renewable energy, which is essential to meet future energy demands without further polluting the environment, but current solar panels based on silicon are expensive due to the cost of raw materials and high energy consumption during production. The way forward is to move towards thin-film solar cells using alternative materials and low-cost manufacturing methods. The photovoltaic community is actively researching thin-film solar cells based on amorphous silicon, cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and dye-sensitised and organic materials. However, progress has been slow due to a lack of proper understanding of the physics behind these devices. This book concentrates on the latest developments and attempts to improve our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. The author extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multi-layer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system, and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible and infra-red) within the solar spectrum and combine "impact ionisation" and "impurity photovoltaic" effects. The improved device understanding presented in this book should impact and guide future photovoltaic device development and low-cost thin-film solar panel manufacture. This new edition features an additional chapter besides exercises and their solutions, which will be useful for academics teaching in this field.

Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells PDF Author: Kentaro Ito
Publisher: John Wiley & Sons
ISBN: 111843787X
Category : Technology & Engineering
Languages : en
Pages : 449

Get Book

Book Description
Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.

Physics of Thin-Film Photovoltaics

Physics of Thin-Film Photovoltaics PDF Author: Victor G. Karpov
Publisher: John Wiley & Sons
ISBN: 111965100X
Category : Science
Languages : en
Pages : 292

Get Book

Book Description
PHYSICS OF THIN-FILM PHOTOVOLTAICS Tackling one of the hottest topics in renewables, thin-film photovoltaics, the authors present the latest updates, technologies, and applications, offering the most up-to-date and thorough coverage available to the engineer, scientist, or student. It appears rather paradoxical that thin-film photovoltaics (PVs) are made of materials that seem unacceptable from the classical PV perspective, and yet they often outperform classical PV. This exciting new volume solves that paradox by switching to a new physics paradigm. Many concepts here fall beyond the classical PV scope. The differences lie in device thinness (microns instead of millimeters) and morphology (non-crystalline instead of crystalline). In such structures, the charge carriers can reach electrodes without recombination. On the other hand, thin disordered structures render a possibility of detrimental lateral nonuniformities (“recombination highways”), and their energy spectra give rise to new recombination modes. The mechanisms of thermal exchange and device degradation are correspondingly unique. The overall objective of this book is to give a self-contained in-depth discussion of the physics of thin-film systems in a manner accessible to both researchers and students. It covers most aspects of the physics of thin-film PV, including device operations, material structure and parameters, thin-film junction formation, analytical and numerical modeling, concepts of large area effects and lateral non-uniformities, physics of shunting (both shunt growth and effects), and device degradation. Also, it reviews a variety of physical diagnostic techniques proven with thin-film PV. Whether for the veteran engineer or the student, this is a must-have for any library. This outstanding new volume: Covers not only the state-of-the-art of thin-film photovoltaics, but also the basics, making this volume useful not just to the veteran engineer, but the new-hire or student as well Offers a comprehensive coverage of thin-film photovoltaics, including operations, modeling, non-uniformities, piezo-effects, and degradation Includes novel concepts and applications never presented in book format before Is an essential reference, not just for the engineer, scientist, and student, but the unassuming level of presentation also makes it accessible to readers with a limited physics background Is filled with workable examples and designs that are helpful for practical applications Is useful as a textbook for researchers, students, and faculty for understanding new ideas in this rapidly emerging field Audience: Industrial professionals in photovoltaics, such as engineers, managers, research and development staff, technicians, government and private research labs; also academic and research universities, such as physics, chemistry, and electrical engineering departments, and graduate and undergraduate students studying electronic devices, semiconductors, and energy disciplines