Uncertain Projective Geometry

Uncertain Projective Geometry PDF Author: Stephan Heuel
Publisher: Springer Science & Business Media
ISBN: 3540220291
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
Algebraic projective geometry, with its multilinear relations and its embedding into Grassmann-Cayley algebra, has become the basic representation of multiple view geometry, resulting in deep insights into the algebraic structure of geometric relations, as well as in efficient and versatile algorithms for computer vision and image analysis. This book provides a coherent integration of algebraic projective geometry and spatial reasoning under uncertainty with applications in computer vision. Beyond systematically introducing the theoretical foundations from geometry and statistics and clear rules for performing geometric reasoning under uncertainty, the author provides a collection of detailed algorithms. The book addresses researchers and advanced students interested in algebraic projective geometry for image analysis, in statistical representation of objects and transformations, or in generic tools for testing and estimating within the context of geometric multiple-view analysis.

Uncertain Projective Geometry

Uncertain Projective Geometry PDF Author: Stephan Heuel
Publisher: Springer Science & Business Media
ISBN: 3540220291
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
Algebraic projective geometry, with its multilinear relations and its embedding into Grassmann-Cayley algebra, has become the basic representation of multiple view geometry, resulting in deep insights into the algebraic structure of geometric relations, as well as in efficient and versatile algorithms for computer vision and image analysis. This book provides a coherent integration of algebraic projective geometry and spatial reasoning under uncertainty with applications in computer vision. Beyond systematically introducing the theoretical foundations from geometry and statistics and clear rules for performing geometric reasoning under uncertainty, the author provides a collection of detailed algorithms. The book addresses researchers and advanced students interested in algebraic projective geometry for image analysis, in statistical representation of objects and transformations, or in generic tools for testing and estimating within the context of geometric multiple-view analysis.

Uncertainty in Geometric Computations

Uncertainty in Geometric Computations PDF Author: Joab Winkler
Publisher: Springer Science & Business Media
ISBN: 1461508134
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
This book contains the proceedings of the workshop Uncertainty in Geomet ric Computations that was held in Sheffield, England, July 5-6, 2001. A total of 59 delegates from 5 countries in Europe, North America and Asia attended the workshop. The workshop provided a forum for the discussion of com putational methods for quantifying, representing and assessing the effects of uncertainty in geometric computations. It was organised around lectures by invited speakers, and presentations in poster form from participants. Computer simulations and modelling are used frequently in science and engi neering, in applications ranging from the understanding of natural and artificial phenomena, to the design, test and manufacturing stages of production. This widespread use necessarily implies that detailed knowledge of the limitations of computer simulations is required. In particular, the usefulness of a computer simulation is directly dependent on the user's knowledge of the uncertainty in the simulation. Although an understanding of the phenomena being modelled is an important requirement of a good computer simulation, the model will be plagued by deficiencies if the errors and uncertainties in it are not consid ered when the results are analysed. The applications of computer modelling are large and diverse, but the workshop focussed on the management of un certainty in three areas : Geometric modelling, computer vision, and computer graphics.

Handbook of Geometric Computing

Handbook of Geometric Computing PDF Author: Eduardo Bayro Corrochano
Publisher: Springer Science & Business Media
ISBN: 3540282475
Category : Computers
Languages : en
Pages : 773

Get Book Here

Book Description
Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.

Geometric Properties for Incomplete Data

Geometric Properties for Incomplete Data PDF Author: Reinhard Klette
Publisher: Springer Science & Business Media
ISBN: 1402038585
Category : Computers
Languages : en
Pages : 394

Get Book Here

Book Description
Computer vision and image analysis require interdisciplinary collaboration between mathematics and engineering. This book addresses the area of high-accuracy measurements of length, curvature, motion parameters and other geometrical quantities from acquired image data. It is a common problem that these measurements are incomplete or noisy, such that considerable efforts are necessary to regularise the data, to fill in missing information, and to judge the accuracy and reliability of these results. This monograph brings together contributions from researchers in computer vision, engineering and mathematics who are working in this area. The book can be read both by specialists and graduate students in computer science, electrical engineering or mathematics who take an interest in data evaluations by approximation or interpolation, in particular data obtained in an image analysis context.

Vision Sensors and Edge Detection

Vision Sensors and Edge Detection PDF Author: Jose H. Espina-Hernandez
Publisher: BoD – Books on Demand
ISBN: 9533070986
Category : Computers
Languages : en
Pages : 206

Get Book Here

Book Description
Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing.

Photogrammetric Computer Vision

Photogrammetric Computer Vision PDF Author: Wolfgang Förstner
Publisher: Springer
ISBN: 3319115502
Category : Computers
Languages : en
Pages : 819

Get Book Here

Book Description
This textbook offers a statistical view on the geometry of multiple view analysis, required for camera calibration and orientation and for geometric scene reconstruction based on geometric image features. The authors have backgrounds in geodesy and also long experience with development and research in computer vision, and this is the first book to present a joint approach from the converging fields of photogrammetry and computer vision. Part I of the book provides an introduction to estimation theory, covering aspects such as Bayesian estimation, variance components, and sequential estimation, with a focus on the statistically sound diagnostics of estimation results essential in vision metrology. Part II provides tools for 2D and 3D geometric reasoning using projective geometry. This includes oriented projective geometry and tools for statistically optimal estimation and test of geometric entities and transformations and their relations, tools that are useful also in the context of uncertain reasoning in point clouds. Part III is devoted to modelling the geometry of single and multiple cameras, addressing calibration and orientation, including statistical evaluation and reconstruction of corresponding scene features and surfaces based on geometric image features. The authors provide algorithms for various geometric computation problems in vision metrology, together with mathematical justifications and statistical analysis, thus enabling thorough evaluations. The chapters are self-contained with numerous figures and exercises, and they are supported by an appendix that explains the basic mathematical notation and a detailed index. The book can serve as the basis for undergraduate and graduate courses in photogrammetry, computer vision, and computer graphics. It is also appropriate for researchers, engineers, and software developers in the photogrammetry and GIS industries, particularly those engaged with statistically based geometric computer vision methods.

Advances in Visual Computing

Advances in Visual Computing PDF Author: George Bebis
Publisher: Springer Science & Business Media
ISBN: 3642240275
Category : Computers
Languages : en
Pages : 819

Get Book Here

Book Description
The two volume set LNCS 6938 and LNCS 6939 constitutes the refereed proceedings of the 7th International Symposium on Visual Computing, ISVC 2011, held in Las Vegas, NV, USA, in September 2011. The 68 revised full papers and 46 poster papers presented together with 30 papers in the special tracks were carefully reviewed and selected from more than 240 submissions. The papers of part I (LNCS 6938) are organized in computational bioimaging, computer graphics, motion and tracking, segmentation, visualization; mapping modeling and surface reconstruction, biomedical imaging, computer graphics, interactive visualization in novel and heterogeneous display environments, object detection and recognition. Part II (LNCS 6939) comprises topics such as immersive visualization, applications, object detection and recognition, virtual reality, and best practices in teaching visual computing.

Bayesian Modeling of Uncertainty in Low-Level Vision

Bayesian Modeling of Uncertainty in Low-Level Vision PDF Author: Richard Szeliski
Publisher: Springer Science & Business Media
ISBN: 1461316375
Category : Computers
Languages : en
Pages : 206

Get Book Here

Book Description
Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low level vision. Recently, probabilistic models have been proposed and used in vision. Sze liski's method has a few distinguishing features that make this monograph im portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion.

Computer Vision - ECCV 2008

Computer Vision - ECCV 2008 PDF Author: David Forsyth
Publisher: Springer Science & Business Media
ISBN: 3540886923
Category : Computers
Languages : en
Pages : 911

Get Book Here

Book Description
The four-volume set comprising LNCS volumes 5302/5303/5304/5305 constitutes the refereed proceedings of the 10th European Conference on Computer Vision, ECCV 2008, held in Marseille, France, in October 2008. The 243 revised papers presented were carefully reviewed and selected from a total of 871 papers submitted. The four books cover the entire range of current issues in computer vision. The papers are organized in topical sections on recognition, stereo, people and face recognition, object tracking, matching, learning and features, MRFs, segmentation, computational photography and active reconstruction.

Topographic Laser Ranging and Scanning

Topographic Laser Ranging and Scanning PDF Author: Jie Shan
Publisher: CRC Press
ISBN: 1351835459
Category : Technology & Engineering
Languages : en
Pages : 868

Get Book Here

Book Description
A systematic, in-depth introduction to theories and principles of Light Detection and Ranging (LiDAR) technology is long overdue, as it is the most important geospatial data acquisition technology to be introduced in recent years. An advanced discussion, this text fills the void. Professionals in fields ranging from geology, geography and geoinformatics to physics, transportation, and law enforcement will benefit from this comprehensive discussion of topographic LiDAR principles, systems, data acquisition, and data processing techniques. The book covers ranging and scanning fundamentals, and broad, contemporary analysis of airborne LiDAR systems, as well as those situated on land and in space. The authors present data collection at the signal level in terms of waveforms and their properties; at the system level with regard to calibration and georeferencing; and at the data level to discuss error budget, quality control, and data organization. They devote the bulk of the book to LiDAR data processing and information extraction and elaborate on recent developments in building extraction and reconstruction, highlighting quality and performance evaluations. There is also extensive discussion of the state-of-the-art technological developments used in: filtering algorithms for digital terrain model generation; strip adjustment of data for registration; co-registration of LiDAR data with imagery; forestry inventory; and surveying. Readers get insight into why LiDAR is the effective tool of choice to collect massive volumes of explicit 3-D data with unprecedented accuracy and simplicity. Compiled by leading experts talking about much of their own pioneering work, this book will give researchers, professionals, and senior students novel ideas to supplement their own experience and practices.