Unbounded Operator Algebras and Representation Theory

Unbounded Operator Algebras and Representation Theory PDF Author: K. Schmüdgen
Publisher: Birkhäuser
ISBN: 3034874693
Category : Mathematics
Languages : en
Pages : 381

Get Book Here

Book Description
*-algebras of unbounded operators in Hilbert space, or more generally algebraic systems of unbounded operators, occur in a natural way in unitary representation theory of Lie groups and in the Wightman formulation of quantum field theory. In representation theory they appear as the images of the associated representations of the Lie algebras or of the enveloping algebras on the Garding domain and in quantum field theory they occur as the vector space of field operators or the *-algebra generated by them. Some of the basic tools for the general theory were first introduced and used in these fields. For instance, the notion of the weak (bounded) commutant which plays a fundamental role in thegeneraltheory had already appeared in quantum field theory early in the six ties. Nevertheless, a systematic study of unbounded operator algebras began only at the beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, LASSNER, POWERS, UHLMANN and VASILIEV. J1'rom the very beginning, and still today, represen tation theory of Lie groups and Lie algebras and quantum field theory have been primary sources of motivation and also of examples. However, the general theory of unbounded operator algebras has also had points of contact with several other disciplines. In particu lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri bution theory, single operator theory, the momcnt problem and its non-commutative generalizations and noncommutative probability theory, all have interacted with our subject.

Unbounded Operator Algebras and Representation Theory

Unbounded Operator Algebras and Representation Theory PDF Author: K. Schmüdgen
Publisher: Birkhäuser
ISBN: 3034874693
Category : Mathematics
Languages : en
Pages : 381

Get Book Here

Book Description
*-algebras of unbounded operators in Hilbert space, or more generally algebraic systems of unbounded operators, occur in a natural way in unitary representation theory of Lie groups and in the Wightman formulation of quantum field theory. In representation theory they appear as the images of the associated representations of the Lie algebras or of the enveloping algebras on the Garding domain and in quantum field theory they occur as the vector space of field operators or the *-algebra generated by them. Some of the basic tools for the general theory were first introduced and used in these fields. For instance, the notion of the weak (bounded) commutant which plays a fundamental role in thegeneraltheory had already appeared in quantum field theory early in the six ties. Nevertheless, a systematic study of unbounded operator algebras began only at the beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, LASSNER, POWERS, UHLMANN and VASILIEV. J1'rom the very beginning, and still today, represen tation theory of Lie groups and Lie algebras and quantum field theory have been primary sources of motivation and also of examples. However, the general theory of unbounded operator algebras has also had points of contact with several other disciplines. In particu lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri bution theory, single operator theory, the momcnt problem and its non-commutative generalizations and noncommutative probability theory, all have interacted with our subject.

An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space

An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space PDF Author: Konrad Schmüdgen
Publisher: Springer Nature
ISBN: 3030463664
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
This textbook provides an introduction to representations of general ∗-algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of ∗-algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded ∗-algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensätze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.

Partial *- Algebras and Their Operator Realizations

Partial *- Algebras and Their Operator Realizations PDF Author: J-P Antoine
Publisher: Springer Science & Business Media
ISBN: 9781402010255
Category : Mathematics
Languages : en
Pages : 554

Get Book Here

Book Description
Algebras of bounded operators are familiar, either as C*-algebras or as von Neumann algebras. A first generalization is the notion of algebras of unbounded operators (O*-algebras), mostly developed by the Leipzig school and in Japan (for a review, we refer to the monographs of K. Schmüdgen [1990] and A. Inoue [1998]). This volume goes one step further, by considering systematically partial *-algebras of unbounded operators (partial O*-algebras) and the underlying algebraic structure, namely, partial *-algebras. It is the first textbook on this topic. The first part is devoted to partial O*-algebras, basic properties, examples, topologies on them. The climax is the generalization to this new framework of the celebrated modular theory of Tomita-Takesaki, one of the cornerstones for the applications to statistical physics. The second part focuses on abstract partial *-algebras and their representation theory, obtaining again generalizations of familiar theorems (Radon-Nikodym, Lebesgue).

Topological Algebras with Involution

Topological Algebras with Involution PDF Author: M. Fragoulopoulou
Publisher: Elsevier
ISBN: 0080461220
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
This book familiarizes both popular and fundamental notions and techniques from the theory of non-normed topological algebras with involution, demonstrating with examples and basic results the necessity of this perspective. The main body of the book is focussed on the Hilbert-space (bounded) representation theory of topological *-algebras and their topological tensor products, since in our physical world, apart from the majority of the existing unbounded operators, we often meet operators that are forced to be bounded, like in the case of symmetric *-algebras. So, one gets an account of how things behave, when the mathematical structures are far from being algebras endowed with a complete or non-complete algebra norm. In problems related with mathematical physics, such instances are, indeed, quite common.Key features:- Lucid presentation- Smooth in reading- Informative- Illustrated by examples- Familiarizes the reader with the non-normed *-world- Encourages the hesitant- Welcomes new comers.- Well written and lucid presentation.- Informative and illustrated by examples.- Familiarizes the reader with the non-normed *-world.

Unbounded Operator Algebras and Representation Theory

Unbounded Operator Algebras and Representation Theory PDF Author: Konrad Schmüdgen
Publisher:
ISBN: 9783055006074
Category : Operator algebras
Languages : en
Pages : 380

Get Book Here

Book Description


Selfadjoint and Nonselfadjoint Operator Algebras and Operator Theory

Selfadjoint and Nonselfadjoint Operator Algebras and Operator Theory PDF Author: Robert S. Doran
Publisher: American Mathematical Soc.
ISBN: 0821851276
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
This book contains papers presented at the NSF/CBMS Regional Conference on Coordinates in Operator Algebras, held at Texas Christian University in Fort Worth in May 1990. During the conference, in addition to a series of ten lectures by Paul S Muhly (which will be published in a CBMS Regional Conference Series volume), there were twenty-eight lectures delivered by conference participants on a broad range of topics of current interest in operator algebras and operator theory. This volume contains slightly expanded versions of most of those lectures. Participants were encouraged to bring open problems to the conference, and, as a result, there are over one hundred problems and questions scattered throughout this volume. Readers will appreciate this book for the overview it provides of current topics and methods of operator algebras and operator theory.

Functional Analysis

Functional Analysis PDF Author: V.S. Sunder
Publisher: Springer Science & Business Media
ISBN: 9783764358921
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
In an elegant and concise fashion, this book presents the concepts of functional analysis required by students of mathematics and physics. It begins with the basics of normed linear spaces and quickly proceeds to concentrate on Hilbert spaces, specifically the spectral theorem for bounded as well as unbounded operators in separable Hilbert spaces. While the first two chapters are devoted to basic propositions concerning normed vector spaces and Hilbert spaces, the third chapter treats advanced topics which are perhaps not standard in a first course on functional analysis. It begins with the Gelfand theory of commutative Banach algebras, and proceeds to the Gelfand-Naimark theorem on commutative C*-algebras. A discussion of representations of C*-algebras follows, and the final section of this chapter is devoted to the Hahn-Hellinger classification of separable representations of commutative C*-algebras. After this detour into operator algebras, the fourth chapter reverts to more standard operator theory in Hilbert space, dwelling on topics such as the spectral theorem for normal operators, the polar decomposition theorem, and the Fredholm theory for compact operators. A brief introduction to the theory of unbounded operators on Hilbert space is given in the fifth and final chapter. There is a voluminous appendix whose purpose is to fill in possible gaps in the reader's background in various areas such as linear algebra, topology, set theory and measure theory. The book is interspersed with many exercises, and hints are provided for the solutions to the more challenging of these.

An Introduction to the Mathematical Structure of Quantum Mechanics

An Introduction to the Mathematical Structure of Quantum Mechanics PDF Author: F. Strocchi
Publisher: World Scientific
ISBN: 9812835229
Category : Science
Languages : en
Pages : 193

Get Book Here

Book Description
Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.

Index Theory and Operator Algebras

Index Theory and Operator Algebras PDF Author: Jeffrey Stephen Fox
Publisher: American Mathematical Soc.
ISBN: 0821851527
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
This collection of papers by leading researchers provides a broad picture of current research directions in index theory. Based on lectures presented at the NSF-CBMS Regional Conference on $K$-Homology and Index Theory, held in August, 1991 at the University of Colorado at Boulder, the book provides both a careful exposition of new perspectives in classical index theory and an introduction to currently active areas of the field. Presented here are two new proofs of the classical Atiyah-Singer Index Theorem, as well as index theorems for manifolds with boundary and open manifolds. Index theory for semi-simple $p$-adic groups and the geometry of discrete groups are also discussed. Throughout the book, the application of operator algebras emerges as a central theme. Aimed at graduate students and researchers, this book is suitable as a text for an advanced graduate course on index theory.

Integrals and Operators

Integrals and Operators PDF Author: I.E. Segal
Publisher: Springer Science & Business Media
ISBN: 3642666930
Category : Mathematics
Languages : en
Pages : 387

Get Book Here

Book Description
TO THE SECOND EDITION Since publication of the First Edition several excellent treatments of advanced topics in analysis have appeared. However, the concentration and penetration of these treatises naturally require much in the way of technical preliminaries and new terminology and notation. There consequently remains a need for an introduction to some of these topics which would mesh with the material of the First Edition. Such an introduction could serve to exemplify the material further, while using it to shorten and simplify its presentation. It seemed particularly important as well as practical to treat briefly but cogently some of the central parts of operator algebra and higher operator theory, as these are presently represented in book form only with a degree of specialization rather beyond the immediate needs or interests of many readers. Semigroup and perturbation theory provide connections with the theory of partial differential equations. C*-algebras are important in har monic analysis and the mathematical foundations of quantum mechanics. W*-algebras (or von Neumann rings) provide an approach to the theory of multiplicity of the spectrum and some simple but key elements of the gram mar of analysis, of use in group representation theory and elsewhere. The v vi Preface to the Second Edition theory of the trace for operators on Hilbert space is both important in itself and a natural extension of earlier integration-theoretic ideas.