Ultrafast Imaging of Coherent Molecular Dynamics at the Linac Coherent Light Source

Ultrafast Imaging of Coherent Molecular Dynamics at the Linac Coherent Light Source PDF Author: James Michael Glownia
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this thesis I will describe some of the techniques we have developed to extract coherent vibrational and rotational wavepacket motion from stochastic ultrafast free electron x-ray light sources such as the Linac Coherent Light Source. In the initial experiments we performed, the ultrafast x-rays themselves created vibrational wavepackets that were probed by an ultrafast optical laser, and to the best of our knowledge this is the first example of ultrafast coherent preparation of a wavepacket using x-rays. The x-rays were also utilized to probe rotational wavepackets formed by the optical laser. These findings led to a second series of experiments where we sought to use the x-rays as a probe of non Born-Oppenheimer dynamics. The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features produced by coherent rotational wavepackets were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. To overcome this limitation we analyzed the ion time of flight traces using a manifold embedding and nonlinear singular value decomposition techniques in collaboration with Abbas Ourmazd and Russell Fung at the University of Wisconsin Milwaukee. This analysis automatically separated the alignment and dication dissociation dynamics from the data, and it revealed fast dynamics that we can attribute to coherent vibrational wavepackets that were created by the ultrafast x-rays and probed by the optical laser. A second study we performed looked at the feasibility of using the LCLS as a fast Coulomb explosion probe of systems undergoing fast laser induced dynamics beyond molecular alignment. As the primary mechanism of energy transfer in natural chemical systems, developing a fundamental understanding of non-radiative excited-state transfer via conical-intersections is of utmost importance for many fields such as biochemistry, alternative energy research, and quantum control. In general, the relevant chemical systems are complex and the exact energy transfer pathways are hard to discriminate from other dynamics. We conducted an experiment to use ultrafast optical and x-ray lasers to induce and observe time resolved molecular dynamics of an optically induced conical-intersection in a prototype system of molecular iodine. Few-femtosecond x-ray pulses from the LCLS then rapidly ionized the molecules without additional strong-field dressing of the potential energy surfaces under investigation. We used optically-dressed molecular iodine as a well controllable analog of a natural conical-intersections. Additionally, we implemented a molecular alignment technique that should prove generally applicable to numerous future LCLS experiments and may compliment condensed-phase x-ray imaging studies of molecular dynamics.

Ultrafast Imaging of Coherent Molecular Dynamics at the Linac Coherent Light Source

Ultrafast Imaging of Coherent Molecular Dynamics at the Linac Coherent Light Source PDF Author: James Michael Glownia
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this thesis I will describe some of the techniques we have developed to extract coherent vibrational and rotational wavepacket motion from stochastic ultrafast free electron x-ray light sources such as the Linac Coherent Light Source. In the initial experiments we performed, the ultrafast x-rays themselves created vibrational wavepackets that were probed by an ultrafast optical laser, and to the best of our knowledge this is the first example of ultrafast coherent preparation of a wavepacket using x-rays. The x-rays were also utilized to probe rotational wavepackets formed by the optical laser. These findings led to a second series of experiments where we sought to use the x-rays as a probe of non Born-Oppenheimer dynamics. The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features produced by coherent rotational wavepackets were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. To overcome this limitation we analyzed the ion time of flight traces using a manifold embedding and nonlinear singular value decomposition techniques in collaboration with Abbas Ourmazd and Russell Fung at the University of Wisconsin Milwaukee. This analysis automatically separated the alignment and dication dissociation dynamics from the data, and it revealed fast dynamics that we can attribute to coherent vibrational wavepackets that were created by the ultrafast x-rays and probed by the optical laser. A second study we performed looked at the feasibility of using the LCLS as a fast Coulomb explosion probe of systems undergoing fast laser induced dynamics beyond molecular alignment. As the primary mechanism of energy transfer in natural chemical systems, developing a fundamental understanding of non-radiative excited-state transfer via conical-intersections is of utmost importance for many fields such as biochemistry, alternative energy research, and quantum control. In general, the relevant chemical systems are complex and the exact energy transfer pathways are hard to discriminate from other dynamics. We conducted an experiment to use ultrafast optical and x-ray lasers to induce and observe time resolved molecular dynamics of an optically induced conical-intersection in a prototype system of molecular iodine. Few-femtosecond x-ray pulses from the LCLS then rapidly ionized the molecules without additional strong-field dressing of the potential energy surfaces under investigation. We used optically-dressed molecular iodine as a well controllable analog of a natural conical-intersections. Additionally, we implemented a molecular alignment technique that should prove generally applicable to numerous future LCLS experiments and may compliment condensed-phase x-ray imaging studies of molecular dynamics.

Measuring Ultrafast Chemical Dynamics with New Light Sources

Measuring Ultrafast Chemical Dynamics with New Light Sources PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Studies of Photoinduced Molecular Dynamics Using a Fast Imaging Sensor

Studies of Photoinduced Molecular Dynamics Using a Fast Imaging Sensor PDF Author: Craig S. Slater
Publisher: Springer
ISBN: 3319245171
Category : Science
Languages : en
Pages : 194

Get Book Here

Book Description
The work presented in this thesis involves a number of sophisticated experiments highlighting novel applications of the Pixel Imaging Mass Spectrometry (PImMS) camera in the field of photoinduced molecular dynamics. This approach represents the union of a new enabling technology (a multiple memory register, CMOS-based pixel detector) with several modern chemical physics approaches and represents a significant leap forward in capabilities. Applications demonstrated include three-dimensional imaging of photofragment Newton spheres, simultaneous electron-ion detection using a single sensor, and ion-ion velocity correlation measurements that open the door to novel covariance imaging experiments. When combined with Coulomb explosion imaging, such an approach is demonstrated to allow the measurement of molecular structure and motion on a femtosecond timescale. This is illustrated through the controlled photoexcitation of torsional motion in biphenyl molecules and the subsequent real-time measurement of the torsional angle.

Attosecond and XUV Physics

Attosecond and XUV Physics PDF Author: Thomas Schultz
Publisher: John Wiley & Sons
ISBN: 3527677658
Category : Science
Languages : en
Pages : 624

Get Book Here

Book Description
This book provides fundamental knowledge in the fields of attosecond science and free electron lasers, based on the insight that the further development of both disciplines can greatly benefit from mutual exposure and interaction between the two communities. With respect to the interaction of high intensity lasers with matter, it covers ultrafast lasers, high-harmonic generation, attosecond pulse generation and characterization. Other chapters review strong-field physics, free electron lasers and experimental instrumentation. Written in an easy accessible style, the book is aimed at graduate and postgraduate students so as to support the scientific training of early stage researchers in this emerging field. Special emphasis is placed on the practical approach of building experiments, allowing young researchers to develop a wide range of scientific skills in order to accelerate the development of spectroscopic techniques and their implementation in scientific experiments. The editors are managers of a research network devoted to the education of young scientists, and this book idea is based on a summer school organized by the ATTOFEL network.

Nanoscale Photonic Imaging

Nanoscale Photonic Imaging PDF Author: Tim Salditt
Publisher: Springer Nature
ISBN: 3030344134
Category : Science
Languages : en
Pages : 634

Get Book Here

Book Description
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Coherent Lattice and Molecular Dynamics in Ultrafast Single-shot Spectroscopy

Coherent Lattice and Molecular Dynamics in Ultrafast Single-shot Spectroscopy PDF Author: Peter Roland Poulin
Publisher:
ISBN:
Category :
Languages : en
Pages : 413

Get Book Here

Book Description
This thesis focuses on the development, refinement, and application of dual- echelon single-shot ultrafast spectroscopy to the study of coherent nuclear motion in condensed phase systems. The general principles of the single-shot method are described, and particular emphasis is given to the general applicability and shortcomings of this technique and the extraction of data from raw laboratory images. Coupled to the single-shot system is a synchronously pumped dual-beam noncollinear optical parametric amplifier which was developed to provide independently tunable pump and probe beams in the visible and UV regions of the electromagnetic spectrum. The second part of the thesis concerns the application of this technique to the study of atomic motions in liquids and solids. Single-shot nonresonant impulsive stimulated Raman scattering (ISRS) measurements in m-iodoanisole and bismuth germanate reveal the existence of transient coherent behavior. High-field resonant excitation of the semimetals bismuth, antimony and tellurium, as well as the semiconductor germanium telluride, reveals dramatic lattice anharmoniticity as a function of pump fluence. Finally, ultrafast photodissociation of the triiodide ion both in solution and in the solid state gives considerable insight regarding the role of the local environment in mediating chemical reaction dynamics.

Structural Dynamics with X-ray and Electron Scattering

Structural Dynamics with X-ray and Electron Scattering PDF Author: Kasra Amini
Publisher: Royal Society of Chemistry
ISBN: 1837671141
Category : Science
Languages : en
Pages : 671

Get Book Here

Book Description


Ultrafast Phenomena in Molecular Sciences

Ultrafast Phenomena in Molecular Sciences PDF Author: Rebeca de Nalda
Publisher: Springer Science & Business Media
ISBN: 331902051X
Category : Science
Languages : en
Pages : 298

Get Book Here

Book Description
This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the state-of-the-art research that is being carried out in the field of ultrafast molecular science, from theoretical developments, through new phenomena induced by intense laser fields, to the latest techniques applied to the study of molecular dynamics.

XUV Pump-Probe Experiments on Diatomic Molecules

XUV Pump-Probe Experiments on Diatomic Molecules PDF Author: Kirsten Schnorr
Publisher: Springer
ISBN: 3319121391
Category : Science
Languages : en
Pages : 198

Get Book Here

Book Description
This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.

Opportunities in Intense Ultrafast Lasers

Opportunities in Intense Ultrafast Lasers PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309467721
Category : Science
Languages : en
Pages : 347

Get Book Here

Book Description
The laser has revolutionized many areas of science and society, providing bright and versatile light sources that transform the ways we investigate science and enables trillions of dollars of commerce. Now a second laser revolution is underway with pulsed petawatt-class lasers (1 petawatt: 1 million billion watts) that deliver nearly 100 times the total world's power concentrated into a pulse that lasts less than one-trillionth of a second. Such light sources create unique, extreme laboratory conditions that can accelerate and collide intense beams of elementary particles, drive nuclear reactions, heat matter to conditions found in stars, or even create matter out of the empty vacuum. These powerful lasers came largely from U.S. engineering, and the science and technology opportunities they enable were discussed in several previous National Academies' reports. Based on these advances, the principal research funding agencies in Europe and Asia began in the last decade to invest heavily in new facilities that will employ these high-intensity lasers for fundamental and applied science. No similar programs exist in the United States. Opportunities in Intense Ultrafast Lasers assesses the opportunities and recommends a path forward for possible U.S. investments in this area of science.