Author: J. A. Jacobs
Publisher: Springer Science & Business Media
ISBN: 3642868282
Category : Science
Languages : en
Pages : 187
Book Description
The subject of geomagnetic micropulsations has developed extremely rapidly and it is difficult to know when is an appropriate time to pause and assess the sum total of our knowledge-both observational and theoretical. There has in recent years been a tremendous increase in both the quantity and quality of data and also many theoretical ad vances in our understanding of the phenomenon. Undoubtedly there will be further progress in both areas but it seems worthwhile now to review both our knowledge and our ignorance. This book was essen tially completed by the end of April 1969 and tries to give a summary of the subject up to that time. The Earth is enclosed in the magnetosphere, a hollow carved out of the solar wind by the Earth's magnetic field. Above the ionosphere there is a very tenuous thermal plasma of partially ionized hydrogen in diffusive equilibrium with magnetic and gravitational forces, and ener getic protons and electrons that constitute the trapped Van Allen ra diation belts. Throughout this anisotropic and inhomogeneous plasma, natural and man-made electromagnetic energy propagates in a wide variety of modes and frequency bands. This book is concerned with that class of natural signals called geomagnetic micropulsations-short period (usually of the order of seconds or minutes) fluctuations of the Earth's magnetic field.
Geomagnetic Micropulsations
Author: J. A. Jacobs
Publisher: Springer Science & Business Media
ISBN: 3642868282
Category : Science
Languages : en
Pages : 187
Book Description
The subject of geomagnetic micropulsations has developed extremely rapidly and it is difficult to know when is an appropriate time to pause and assess the sum total of our knowledge-both observational and theoretical. There has in recent years been a tremendous increase in both the quantity and quality of data and also many theoretical ad vances in our understanding of the phenomenon. Undoubtedly there will be further progress in both areas but it seems worthwhile now to review both our knowledge and our ignorance. This book was essen tially completed by the end of April 1969 and tries to give a summary of the subject up to that time. The Earth is enclosed in the magnetosphere, a hollow carved out of the solar wind by the Earth's magnetic field. Above the ionosphere there is a very tenuous thermal plasma of partially ionized hydrogen in diffusive equilibrium with magnetic and gravitational forces, and ener getic protons and electrons that constitute the trapped Van Allen ra diation belts. Throughout this anisotropic and inhomogeneous plasma, natural and man-made electromagnetic energy propagates in a wide variety of modes and frequency bands. This book is concerned with that class of natural signals called geomagnetic micropulsations-short period (usually of the order of seconds or minutes) fluctuations of the Earth's magnetic field.
Publisher: Springer Science & Business Media
ISBN: 3642868282
Category : Science
Languages : en
Pages : 187
Book Description
The subject of geomagnetic micropulsations has developed extremely rapidly and it is difficult to know when is an appropriate time to pause and assess the sum total of our knowledge-both observational and theoretical. There has in recent years been a tremendous increase in both the quantity and quality of data and also many theoretical ad vances in our understanding of the phenomenon. Undoubtedly there will be further progress in both areas but it seems worthwhile now to review both our knowledge and our ignorance. This book was essen tially completed by the end of April 1969 and tries to give a summary of the subject up to that time. The Earth is enclosed in the magnetosphere, a hollow carved out of the solar wind by the Earth's magnetic field. Above the ionosphere there is a very tenuous thermal plasma of partially ionized hydrogen in diffusive equilibrium with magnetic and gravitational forces, and ener getic protons and electrons that constitute the trapped Van Allen ra diation belts. Throughout this anisotropic and inhomogeneous plasma, natural and man-made electromagnetic energy propagates in a wide variety of modes and frequency bands. This book is concerned with that class of natural signals called geomagnetic micropulsations-short period (usually of the order of seconds or minutes) fluctuations of the Earth's magnetic field.
Dayside Magnetosphere Interactions
Author: Qiugang Zong
Publisher: John Wiley & Sons
ISBN: 1119509629
Category : Science
Languages : en
Pages : 324
Book Description
Exploring the processes and phenomena of Earth's dayside magnetosphere Energy and momentum transfer, initially taking place at the dayside magnetopause, is responsible for a variety of phenomenon that we can measure on the ground. Data obtained from observations of Earth’s dayside magnetosphere increases our knowledge of the processes by which solar wind mass, momentum, and energy enter the magnetosphere. Dayside Magnetosphere Interactions outlines the physics and processes of dayside magnetospheric phenomena, the role of solar wind in generating ultra-low frequency waves, and solar wind-magnetosphere-ionosphere coupling. Volume highlights include: Phenomena across different temporal and spatial scales Discussions on dayside aurora, plume dynamics, and related dayside reconnection Results from spacecraft observations, ground-based observations, and simulations Discoveries from the Magnetospheric Multiscale Mission and Van Allen Probes era Exploration of foreshock, bow shock, magnetosheath, magnetopause, and cusps Examination of similar processes occurring around other planets The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors
Publisher: John Wiley & Sons
ISBN: 1119509629
Category : Science
Languages : en
Pages : 324
Book Description
Exploring the processes and phenomena of Earth's dayside magnetosphere Energy and momentum transfer, initially taking place at the dayside magnetopause, is responsible for a variety of phenomenon that we can measure on the ground. Data obtained from observations of Earth’s dayside magnetosphere increases our knowledge of the processes by which solar wind mass, momentum, and energy enter the magnetosphere. Dayside Magnetosphere Interactions outlines the physics and processes of dayside magnetospheric phenomena, the role of solar wind in generating ultra-low frequency waves, and solar wind-magnetosphere-ionosphere coupling. Volume highlights include: Phenomena across different temporal and spatial scales Discussions on dayside aurora, plume dynamics, and related dayside reconnection Results from spacecraft observations, ground-based observations, and simulations Discoveries from the Magnetospheric Multiscale Mission and Van Allen Probes era Exploration of foreshock, bow shock, magnetosheath, magnetopause, and cusps Examination of similar processes occurring around other planets The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors
Handbook of the Solar-Terrestrial Environment
Author: Yohsuke Kamide
Publisher: Springer Science & Business Media
ISBN: 3540463151
Category : Science
Languages : en
Pages : 539
Book Description
As a star in the universe, the Sun is constantly releas- cover a wide range of time and spatial scales, making ?? ing energy into space, as much as ?. ? ?? erg/s. Tis observations in the solar-terrestrial environment c- energy emission basically consists of three modes. Te plicated and the understanding of processes di?cult. ?rst mode of solar energy is the so-called blackbody ra- In the early days, the phenomena in each plasma diation, commonly known as sunlight, and the second region were studied separately, but with the progress mode of solar electromagnetic emission, such as X rays of research, we realized the importance of treating and UV radiation, is mostly absorbed above the Earth’s the whole chain of processes as an entity because of stratosphere. Te third mode of solar energy emission is strong interactions between various regions within in the form of particles having a wide range of energies the solar-terrestrial system. On the basis of extensive from less than ? keV to more than ? GeV. It is convenient satellite observations and computer simulations over to group these particles into lower-energy particles and thepasttwo decades, it hasbecomepossibleto analyze higher-energy particles, which are referred to as the so- speci?cally the close coupling of di?erent regions in the lar wind and solar cosmic rays, respectively. solar-terrestrial environment.
Publisher: Springer Science & Business Media
ISBN: 3540463151
Category : Science
Languages : en
Pages : 539
Book Description
As a star in the universe, the Sun is constantly releas- cover a wide range of time and spatial scales, making ?? ing energy into space, as much as ?. ? ?? erg/s. Tis observations in the solar-terrestrial environment c- energy emission basically consists of three modes. Te plicated and the understanding of processes di?cult. ?rst mode of solar energy is the so-called blackbody ra- In the early days, the phenomena in each plasma diation, commonly known as sunlight, and the second region were studied separately, but with the progress mode of solar electromagnetic emission, such as X rays of research, we realized the importance of treating and UV radiation, is mostly absorbed above the Earth’s the whole chain of processes as an entity because of stratosphere. Te third mode of solar energy emission is strong interactions between various regions within in the form of particles having a wide range of energies the solar-terrestrial system. On the basis of extensive from less than ? keV to more than ? GeV. It is convenient satellite observations and computer simulations over to group these particles into lower-energy particles and thepasttwo decades, it hasbecomepossibleto analyze higher-energy particles, which are referred to as the so- speci?cally the close coupling of di?erent regions in the lar wind and solar cosmic rays, respectively. solar-terrestrial environment.
The Advanced Composition Explorer Mission
Author: C.T. Russell
Publisher: Springer Science & Business Media
ISBN: 9401147620
Category : Science
Languages : en
Pages : 667
Book Description
NASA's Advanced Composition Explorer (ACE) was launched on August 25, 1997, carrying six high-resolution spectrometers that measure the abundances of the elements, isotopes, and ionic charge states of energetic nuclei in space. Data from these instruments is being used to measure and compare the composition of the solar corona, the nearby interstellar medium, and cosmic-ray sources in the Galaxy, and to study particle acceleration processes in a variety of environments. ACE also includes three instruments that monitor solar wind and energetic particle activity near the inner Lagrangian point, "1.5 million kilometers sunward of Earth, and provide continuous, real-time data to NOAA for use in forecasting space weather. Eleven of the articles in this volume review scientific progress and outline questions that ACE will address in solar, space-plasma, and cosmic-ray physics. Other articles describe the ACE spacecraft, the real-time solar-wind system, and the instruments used to measure energetic particle composition.
Publisher: Springer Science & Business Media
ISBN: 9401147620
Category : Science
Languages : en
Pages : 667
Book Description
NASA's Advanced Composition Explorer (ACE) was launched on August 25, 1997, carrying six high-resolution spectrometers that measure the abundances of the elements, isotopes, and ionic charge states of energetic nuclei in space. Data from these instruments is being used to measure and compare the composition of the solar corona, the nearby interstellar medium, and cosmic-ray sources in the Galaxy, and to study particle acceleration processes in a variety of environments. ACE also includes three instruments that monitor solar wind and energetic particle activity near the inner Lagrangian point, "1.5 million kilometers sunward of Earth, and provide continuous, real-time data to NOAA for use in forecasting space weather. Eleven of the articles in this volume review scientific progress and outline questions that ACE will address in solar, space-plasma, and cosmic-ray physics. Other articles describe the ACE spacecraft, the real-time solar-wind system, and the instruments used to measure energetic particle composition.
The Magnetotelluric Method
Author: Alan D. Chave
Publisher: Cambridge University Press
ISBN: 1107376971
Category : Science
Languages : en
Pages : 571
Book Description
The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near surface down to the 410 km transition zone and beyond. This book forms the first comprehensive overview of magnetotellurics, from the salient physics and its mathematical representation to practical implementation in the field, data processing, modeling and geological interpretation. Electromagnetic induction in 1-D, 2-D and 3-D media is explored, building from first principles, and with thorough coverage of the practical techniques of time series processing, distortion, numerical modeling and inversion. The fundamental principles are illustrated with a series of case histories describing geological applications. Technical issues, instrumentation and field practices are described for both land and marine surveys. This book provides a rigorous introduction to magnetotellurics for academic researchers and advanced students, and will be of interest to industrial practitioners and geoscientists wanting to incorporate rock conductivity into their interpretations.
Publisher: Cambridge University Press
ISBN: 1107376971
Category : Science
Languages : en
Pages : 571
Book Description
The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near surface down to the 410 km transition zone and beyond. This book forms the first comprehensive overview of magnetotellurics, from the salient physics and its mathematical representation to practical implementation in the field, data processing, modeling and geological interpretation. Electromagnetic induction in 1-D, 2-D and 3-D media is explored, building from first principles, and with thorough coverage of the practical techniques of time series processing, distortion, numerical modeling and inversion. The fundamental principles are illustrated with a series of case histories describing geological applications. Technical issues, instrumentation and field practices are described for both land and marine surveys. This book provides a rigorous introduction to magnetotellurics for academic researchers and advanced students, and will be of interest to industrial practitioners and geoscientists wanting to incorporate rock conductivity into their interpretations.
The Dynamic Magnetosphere
Author: William Liu
Publisher: Springer Science & Business Media
ISBN: 9400705018
Category : Science
Languages : en
Pages : 367
Book Description
Despite the plethora of monographs published in recent years, few cover recent progress in magnetospheric physics in broad areas of research. While a topical focus is important to in-depth views at a problem, a broad overview of our field is also needed. The volume answers to the latter need. With the collection of articles written by leading scientists, the contributions contained in the book describe latest research results in solar wind-magnetosphere interaction, magnetospheric substorms, magnetosphere-ionosphere coupling, transport phenomena in the plasma sheet, wave and particle dynamics in the ring current and radiation belts, and extra-terrestrial magnetospheric systems. In addition to its breadth and timeliness, the book highlights innovative methods and techniques to study the geospace.
Publisher: Springer Science & Business Media
ISBN: 9400705018
Category : Science
Languages : en
Pages : 367
Book Description
Despite the plethora of monographs published in recent years, few cover recent progress in magnetospheric physics in broad areas of research. While a topical focus is important to in-depth views at a problem, a broad overview of our field is also needed. The volume answers to the latter need. With the collection of articles written by leading scientists, the contributions contained in the book describe latest research results in solar wind-magnetosphere interaction, magnetospheric substorms, magnetosphere-ionosphere coupling, transport phenomena in the plasma sheet, wave and particle dynamics in the ring current and radiation belts, and extra-terrestrial magnetospheric systems. In addition to its breadth and timeliness, the book highlights innovative methods and techniques to study the geospace.
Low-Frequency Waves in Space Plasmas
Author: Andreas Keiling
Publisher: John Wiley & Sons
ISBN: 1119054958
Category : Science
Languages : en
Pages : 524
Book Description
Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun’s atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.
Publisher: John Wiley & Sons
ISBN: 1119054958
Category : Science
Languages : en
Pages : 524
Book Description
Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun’s atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.
Hydromagnetic Waves in the Magnetosphere and the Ionosphere
Author: Leonid S. Alperovich
Publisher: Springer Science & Business Media
ISBN: 1402066376
Category : Science
Languages : en
Pages : 437
Book Description
Here is a fascinating text that integrates topics pertaining to all scales of the MHD-waves, emphasizing the linkages between the ULF-waves below the ionosphere on the ground and magnetospheric MHD-waves. It will be most helpful to graduate and post-graduate students, familiar with advanced calculus, who study the science of MHD-waves in the magnetosphere and ionosphere. The book deals with Ultra-Low-Frequency (ULF)-electromagnetic waves observed on the Earth and in Space.
Publisher: Springer Science & Business Media
ISBN: 1402066376
Category : Science
Languages : en
Pages : 437
Book Description
Here is a fascinating text that integrates topics pertaining to all scales of the MHD-waves, emphasizing the linkages between the ULF-waves below the ionosphere on the ground and magnetospheric MHD-waves. It will be most helpful to graduate and post-graduate students, familiar with advanced calculus, who study the science of MHD-waves in the magnetosphere and ionosphere. The book deals with Ultra-Low-Frequency (ULF)-electromagnetic waves observed on the Earth and in Space.
The Van Allen Probes Mission
Author: Nicola Fox
Publisher: Springer
ISBN: 9781489978707
Category : Science
Languages : en
Pages : 0
Book Description
Documents the science, the mission, the spacecraft and the instrumentation on a unique NASA mission to study the Earth’s dynamic, dangerous and fascinating Van Allen radiation belts that surround the planet This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions. This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the upper atmosphere. Originally published in Space Science Reviews, Vol. 179/1-4, 2013.
Publisher: Springer
ISBN: 9781489978707
Category : Science
Languages : en
Pages : 0
Book Description
Documents the science, the mission, the spacecraft and the instrumentation on a unique NASA mission to study the Earth’s dynamic, dangerous and fascinating Van Allen radiation belts that surround the planet This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions. This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the upper atmosphere. Originally published in Space Science Reviews, Vol. 179/1-4, 2013.
Space Physics and Aeronomy, Magnetospheres in the Solar System
Author: Romain Maggiolo
Publisher: John Wiley & Sons
ISBN: 1119507529
Category : Science
Languages : de
Pages : 61
Book Description
An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief
Publisher: John Wiley & Sons
ISBN: 1119507529
Category : Science
Languages : de
Pages : 61
Book Description
An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief