Author: J. Chapman McGrew, Jr.
Publisher: Waveland Press
ISBN: 1478609621
Category : Science
Languages : en
Pages : 266
Book Description
Written for undergraduate geography majors and entry-level graduate students with limited backgrounds in statistical analysis and methods, McGrew and Monroe provide a comprehensive and understandable introduction to statistical methods in a problem-solving framework. Engaging examples and problems are drawn from a variety of topical areas in both human and physical geography and are fully integrated into the text. Without compromising statistical rigor or oversimplifying, the authors stress the importance of written narratives that explain each statistical technique. After introducing basic statistical concepts and terminology, the authors focus on nonspatial and spatial descriptive statistics. They transition to inferential problem solving, including probability, sampling, and estimation, before delving deeper into inferential statistics for geographic problem solving. The final chapters examine the related techniques of correlation and regression. A list of major goals and objectives is included at the end of each chapter, allowing students to monitor their own progress and mastery of geographic statistical materials. An epilogue, offering over 150 geographic situations, gives students a chance to figure out which statistical technique should be used for a particular situation.
An Introduction to Statistical Problem Solving in Geography
Author: J. Chapman McGrew, Jr.
Publisher: Waveland Press
ISBN: 1478609621
Category : Science
Languages : en
Pages : 266
Book Description
Written for undergraduate geography majors and entry-level graduate students with limited backgrounds in statistical analysis and methods, McGrew and Monroe provide a comprehensive and understandable introduction to statistical methods in a problem-solving framework. Engaging examples and problems are drawn from a variety of topical areas in both human and physical geography and are fully integrated into the text. Without compromising statistical rigor or oversimplifying, the authors stress the importance of written narratives that explain each statistical technique. After introducing basic statistical concepts and terminology, the authors focus on nonspatial and spatial descriptive statistics. They transition to inferential problem solving, including probability, sampling, and estimation, before delving deeper into inferential statistics for geographic problem solving. The final chapters examine the related techniques of correlation and regression. A list of major goals and objectives is included at the end of each chapter, allowing students to monitor their own progress and mastery of geographic statistical materials. An epilogue, offering over 150 geographic situations, gives students a chance to figure out which statistical technique should be used for a particular situation.
Publisher: Waveland Press
ISBN: 1478609621
Category : Science
Languages : en
Pages : 266
Book Description
Written for undergraduate geography majors and entry-level graduate students with limited backgrounds in statistical analysis and methods, McGrew and Monroe provide a comprehensive and understandable introduction to statistical methods in a problem-solving framework. Engaging examples and problems are drawn from a variety of topical areas in both human and physical geography and are fully integrated into the text. Without compromising statistical rigor or oversimplifying, the authors stress the importance of written narratives that explain each statistical technique. After introducing basic statistical concepts and terminology, the authors focus on nonspatial and spatial descriptive statistics. They transition to inferential problem solving, including probability, sampling, and estimation, before delving deeper into inferential statistics for geographic problem solving. The final chapters examine the related techniques of correlation and regression. A list of major goals and objectives is included at the end of each chapter, allowing students to monitor their own progress and mastery of geographic statistical materials. An epilogue, offering over 150 geographic situations, gives students a chance to figure out which statistical technique should be used for a particular situation.
Introductory Business Statistics 2e
Author: Alexander Holmes
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 1801
Book Description
Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 1801
Book Description
Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
An Introduction to Statistical Problem Solving in Geography
Author: Arthur J. Lembo, Jr.
Publisher: Waveland Press
ISBN: 1478652160
Category : Science
Languages : en
Pages : 365
Book Description
The fourth edition of An Introduction to Statistical Problem Solving in Geography continues its standing as the definitive introduction to statistics and quantitative analysis in geography. Assuming no reader background in statistics, the authors lay out the proper role of statistical analysis and methods in human and physical geography. They delve into the calculation of descriptive summaries and graphics to explain geographic patterns and use inferential statistics (parametric and nonparametric) to test for differences (t-tests, ANOVA), relationships (regression and correlation), and spatial statistics (point and area patterns, spatial autocorrelation). This edition introduces more advanced topics, including logistic regression, two-factor ANOVA, and spatial estimation (inverse distance weighting, Kriging). Many chapters also include thought-provoking discussions of statistical concepts as they relate to the COVID-19 pandemic. Maintaining an exploratory and investigative approach throughout, the authors provide readers with real-world geographic issues and more than 50 map examples. Concepts are explained clearly and narratively without oversimplification. Each chapter concludes with a list of major goals and objectives. An epilogue offers over 150 open-ended geographic situations, inviting students to apply their new statistical skills to solve problems currently affecting our world.
Publisher: Waveland Press
ISBN: 1478652160
Category : Science
Languages : en
Pages : 365
Book Description
The fourth edition of An Introduction to Statistical Problem Solving in Geography continues its standing as the definitive introduction to statistics and quantitative analysis in geography. Assuming no reader background in statistics, the authors lay out the proper role of statistical analysis and methods in human and physical geography. They delve into the calculation of descriptive summaries and graphics to explain geographic patterns and use inferential statistics (parametric and nonparametric) to test for differences (t-tests, ANOVA), relationships (regression and correlation), and spatial statistics (point and area patterns, spatial autocorrelation). This edition introduces more advanced topics, including logistic regression, two-factor ANOVA, and spatial estimation (inverse distance weighting, Kriging). Many chapters also include thought-provoking discussions of statistical concepts as they relate to the COVID-19 pandemic. Maintaining an exploratory and investigative approach throughout, the authors provide readers with real-world geographic issues and more than 50 map examples. Concepts are explained clearly and narratively without oversimplification. Each chapter concludes with a list of major goals and objectives. An epilogue offers over 150 open-ended geographic situations, inviting students to apply their new statistical skills to solve problems currently affecting our world.
The Humongous Book of Statistics Problems
Author: Robert Donnelly
Publisher: Penguin
ISBN: 1101151390
Category : Mathematics
Languages : en
Pages : 732
Book Description
Learn to solve statistics problems—and make them no problem! Most math and science study guides are dry and difficult, but this is the exception. Following the successful The Humongous Books in calculus and algebra, bestselling author Mike Kelley takes a typical statistics workbook, full of solved problems, and writes notes in the margins, adding missing steps and simplifying concepts and solutions. By learning how to interpret and solve problems as they are presented in statistics courses, students prepare to solve those difficult problems that were never discussed in class but are always on exams. There are also annotated notes throughout the book to clarify each problem—all guided by an author with a great track record for helping students and math enthusiasts. His website (calculus-help.com) reaches thousands of students every month.
Publisher: Penguin
ISBN: 1101151390
Category : Mathematics
Languages : en
Pages : 732
Book Description
Learn to solve statistics problems—and make them no problem! Most math and science study guides are dry and difficult, but this is the exception. Following the successful The Humongous Books in calculus and algebra, bestselling author Mike Kelley takes a typical statistics workbook, full of solved problems, and writes notes in the margins, adding missing steps and simplifying concepts and solutions. By learning how to interpret and solve problems as they are presented in statistics courses, students prepare to solve those difficult problems that were never discussed in class but are always on exams. There are also annotated notes throughout the book to clarify each problem—all guided by an author with a great track record for helping students and math enthusiasts. His website (calculus-help.com) reaches thousands of students every month.
Mastering Python for Data Science
Author: Samir Madhavan
Publisher: Packt Publishing Ltd
ISBN: 1784392626
Category : Computers
Languages : en
Pages : 294
Book Description
Explore the world of data science through Python and learn how to make sense of data About This Book Master data science methods using Python and its libraries Create data visualizations and mine for patterns Advanced techniques for the four fundamentals of Data Science with Python - data mining, data analysis, data visualization, and machine learning Who This Book Is For If you are a Python developer who wants to master the world of data science then this book is for you. Some knowledge of data science is assumed. What You Will Learn Manage data and perform linear algebra in Python Derive inferences from the analysis by performing inferential statistics Solve data science problems in Python Create high-end visualizations using Python Evaluate and apply the linear regression technique to estimate the relationships among variables. Build recommendation engines with the various collaborative filtering algorithms Apply the ensemble methods to improve your predictions Work with big data technologies to handle data at scale In Detail Data science is a relatively new knowledge domain which is used by various organizations to make data driven decisions. Data scientists have to wear various hats to work with data and to derive value from it. The Python programming language, beyond having conquered the scientific community in the last decade, is now an indispensable tool for the data science practitioner and a must-know tool for every aspiring data scientist. Using Python will offer you a fast, reliable, cross-platform, and mature environment for data analysis, machine learning, and algorithmic problem solving. This comprehensive guide helps you move beyond the hype and transcend the theory by providing you with a hands-on, advanced study of data science. Beginning with the essentials of Python in data science, you will learn to manage data and perform linear algebra in Python. You will move on to deriving inferences from the analysis by performing inferential statistics, and mining data to reveal hidden patterns and trends. You will use the matplot library to create high-end visualizations in Python and uncover the fundamentals of machine learning. Next, you will apply the linear regression technique and also learn to apply the logistic regression technique to your applications, before creating recommendation engines with various collaborative filtering algorithms and improving your predictions by applying the ensemble methods. Finally, you will perform K-means clustering, along with an analysis of unstructured data with different text mining techniques and leveraging the power of Python in big data analytics. Style and approach This book is an easy-to-follow, comprehensive guide on data science using Python. The topics covered in the book can all be used in real world scenarios.
Publisher: Packt Publishing Ltd
ISBN: 1784392626
Category : Computers
Languages : en
Pages : 294
Book Description
Explore the world of data science through Python and learn how to make sense of data About This Book Master data science methods using Python and its libraries Create data visualizations and mine for patterns Advanced techniques for the four fundamentals of Data Science with Python - data mining, data analysis, data visualization, and machine learning Who This Book Is For If you are a Python developer who wants to master the world of data science then this book is for you. Some knowledge of data science is assumed. What You Will Learn Manage data and perform linear algebra in Python Derive inferences from the analysis by performing inferential statistics Solve data science problems in Python Create high-end visualizations using Python Evaluate and apply the linear regression technique to estimate the relationships among variables. Build recommendation engines with the various collaborative filtering algorithms Apply the ensemble methods to improve your predictions Work with big data technologies to handle data at scale In Detail Data science is a relatively new knowledge domain which is used by various organizations to make data driven decisions. Data scientists have to wear various hats to work with data and to derive value from it. The Python programming language, beyond having conquered the scientific community in the last decade, is now an indispensable tool for the data science practitioner and a must-know tool for every aspiring data scientist. Using Python will offer you a fast, reliable, cross-platform, and mature environment for data analysis, machine learning, and algorithmic problem solving. This comprehensive guide helps you move beyond the hype and transcend the theory by providing you with a hands-on, advanced study of data science. Beginning with the essentials of Python in data science, you will learn to manage data and perform linear algebra in Python. You will move on to deriving inferences from the analysis by performing inferential statistics, and mining data to reveal hidden patterns and trends. You will use the matplot library to create high-end visualizations in Python and uncover the fundamentals of machine learning. Next, you will apply the linear regression technique and also learn to apply the logistic regression technique to your applications, before creating recommendation engines with various collaborative filtering algorithms and improving your predictions by applying the ensemble methods. Finally, you will perform K-means clustering, along with an analysis of unstructured data with different text mining techniques and leveraging the power of Python in big data analytics. Style and approach This book is an easy-to-follow, comprehensive guide on data science using Python. The topics covered in the book can all be used in real world scenarios.
Elementary Statistics: A Problem Solving Approach 4th Edition
Author: Andrew L. Comrey
Publisher: Lulu.com
ISBN: 141166616X
Category : Mathematics
Languages : en
Pages : 189
Book Description
A textbook oriented toward behavioral and social science students interested in data analysis. This book shows the reader how to do statistical analyses. It also gives examples and situations where a certain statistical test would be used.
Publisher: Lulu.com
ISBN: 141166616X
Category : Mathematics
Languages : en
Pages : 189
Book Description
A textbook oriented toward behavioral and social science students interested in data analysis. This book shows the reader how to do statistical analyses. It also gives examples and situations where a certain statistical test would be used.
Business Statistics: Problems & Solutions
Author: Sharma J.K.
Publisher: Vikas Publishing House
ISBN: 932597617X
Category : Business & Economics
Languages : en
Pages : 601
Book Description
This book meets the specific and complete requirements of students pursuing MBA/PGDBM, B.Com., M.Com., MA(Eco), CA, ICWA, BBA, BIS/BIT/BCA, etc., courses, who need to understand the basic concepts of business statistics and apply results directly to real-life business problems. The book also suits the requirements of students who need practical knowledge of the subject, as well as for those preparing for competitive examinations.
Publisher: Vikas Publishing House
ISBN: 932597617X
Category : Business & Economics
Languages : en
Pages : 601
Book Description
This book meets the specific and complete requirements of students pursuing MBA/PGDBM, B.Com., M.Com., MA(Eco), CA, ICWA, BBA, BIS/BIT/BCA, etc., courses, who need to understand the basic concepts of business statistics and apply results directly to real-life business problems. The book also suits the requirements of students who need practical knowledge of the subject, as well as for those preparing for competitive examinations.
Problems of Drug Dependence
Author: College on Problems of Drug Dependence (U.S.). Scientific Meeting
Publisher:
ISBN:
Category : Drug abuse
Languages : en
Pages : 564
Book Description
Publisher:
ISBN:
Category : Drug abuse
Languages : en
Pages : 564
Book Description
Problems of Drug Dependence 1996
Author: Louie S. Harrie
Publisher: DIANE Publishing
ISBN: 0788181300
Category :
Languages : en
Pages : 473
Book Description
Symposium presentations address: molecular biological tools in exploring behavior; drugs of abuse and the immune system; marijuana use; motivational aspects of drug abuse; excitatory amino acids in stimulant abuse and AIDS dementia; agonist efficacy, drug dependence, and medications development; drugs of abuse and gender differences; presynaptic and postsynaptic neurochemical alterations in human psychostimulant abusers; antibody and protein based therapies for drug abuse; behavioral and pharmacological interventions for pregnant substance abusers; and mechanisms of abused drugs: concordance between lab. animal and human studies.
Publisher: DIANE Publishing
ISBN: 0788181300
Category :
Languages : en
Pages : 473
Book Description
Symposium presentations address: molecular biological tools in exploring behavior; drugs of abuse and the immune system; marijuana use; motivational aspects of drug abuse; excitatory amino acids in stimulant abuse and AIDS dementia; agonist efficacy, drug dependence, and medications development; drugs of abuse and gender differences; presynaptic and postsynaptic neurochemical alterations in human psychostimulant abusers; antibody and protein based therapies for drug abuse; behavioral and pharmacological interventions for pregnant substance abusers; and mechanisms of abused drugs: concordance between lab. animal and human studies.
Statistics: Problems and Solutions
Author: John Murdoch
Publisher: Springer
ISBN: 1349010634
Category : Mathematics
Languages : en
Pages : 238
Book Description
Publisher: Springer
ISBN: 1349010634
Category : Mathematics
Languages : en
Pages : 238
Book Description