Author: Thomas J. Anastasio
Publisher: Sinauer
ISBN: 9780878933396
Category : Medical
Languages : en
Pages : 0
Book Description
For students of neuroscience and cognitive science who wish to explore the functioning of the brain further, but lack an extensive background in computer programming or maths, this new book makes neural systems modelling truly accessible. Short, simple MATLAB computer programs give readers all the experience necessary to run their own simulations.
Tutorial on Neural Systems Modeling
Author: Thomas J. Anastasio
Publisher: Sinauer
ISBN: 9780878933396
Category : Medical
Languages : en
Pages : 0
Book Description
For students of neuroscience and cognitive science who wish to explore the functioning of the brain further, but lack an extensive background in computer programming or maths, this new book makes neural systems modelling truly accessible. Short, simple MATLAB computer programs give readers all the experience necessary to run their own simulations.
Publisher: Sinauer
ISBN: 9780878933396
Category : Medical
Languages : en
Pages : 0
Book Description
For students of neuroscience and cognitive science who wish to explore the functioning of the brain further, but lack an extensive background in computer programming or maths, this new book makes neural systems modelling truly accessible. Short, simple MATLAB computer programs give readers all the experience necessary to run their own simulations.
Efficient Processing of Deep Neural Networks
Author: Vivienne Sze
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
An Introductory Course in Computational Neuroscience
Author: Paul Miller
Publisher: MIT Press
ISBN: 0262347563
Category : Science
Languages : en
Pages : 405
Book Description
A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.
Publisher: MIT Press
ISBN: 0262347563
Category : Science
Languages : en
Pages : 405
Book Description
A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.
Neural and Adaptive Systems
Author: José C. Principe
Publisher: John Wiley & Sons
ISBN:
Category : Computers
Languages : en
Pages : 680
Book Description
Develop New Insight into the Behavior of Adaptive Systems This one-of-a-kind interactive book and CD-ROM will help you develop a better understanding of the behavior of adaptive systems. Developed as part of a project aimed at innovating the teaching of adaptive systems in science and engineering, it unifies the concepts of neural networks and adaptive filters into a common framework. It begins by explaining the fundamentals of adaptive linear regression and builds on these concepts to explore pattern classification, function approximation, feature extraction, and time-series modeling/prediction. The text is integrated with the industry standard neural network/adaptive system simulator NeuroSolutions. This allows the authors to demonstrate and reinforce key concepts using over 200 interactive examples. Each of these examples is 'live,' allowing the user to change parameters and experiment first-hand with real-world adaptive systems. This creates a powerful environment for learning through both visualization and experimentation. Key Features of the Text The text and CD combine to become an interactive learning tool. Emphasis is on understanding the behavior of adaptive systems rather than mathematical derivations. Each key concept is followed by an interactive example. Over 200 fully functional simulations of adaptive systems are included. The text and CD offer a unified view of neural networks, adaptive filters, pattern recognition, and support vector machines. Hyperlinks allow instant access to keyword definitions, bibliographic references, equations, and advanced discussions of concepts. The CD-ROM Contains: A complete, electronic version of the text in hypertext format NeuroSolutions, an industry standard, icon-based neural network/adaptive system simulator A tutorial on how to use NeuroSolutions Additional data files to use with the simulator "An innovative approach to describing neurocomputing and adaptive learning systems from a perspective which unifies classical linear adaptive systems approaches with the modern advances in neural networks. It is rich in examples and practical insight." —James Zeidler, University of California, San Diego
Publisher: John Wiley & Sons
ISBN:
Category : Computers
Languages : en
Pages : 680
Book Description
Develop New Insight into the Behavior of Adaptive Systems This one-of-a-kind interactive book and CD-ROM will help you develop a better understanding of the behavior of adaptive systems. Developed as part of a project aimed at innovating the teaching of adaptive systems in science and engineering, it unifies the concepts of neural networks and adaptive filters into a common framework. It begins by explaining the fundamentals of adaptive linear regression and builds on these concepts to explore pattern classification, function approximation, feature extraction, and time-series modeling/prediction. The text is integrated with the industry standard neural network/adaptive system simulator NeuroSolutions. This allows the authors to demonstrate and reinforce key concepts using over 200 interactive examples. Each of these examples is 'live,' allowing the user to change parameters and experiment first-hand with real-world adaptive systems. This creates a powerful environment for learning through both visualization and experimentation. Key Features of the Text The text and CD combine to become an interactive learning tool. Emphasis is on understanding the behavior of adaptive systems rather than mathematical derivations. Each key concept is followed by an interactive example. Over 200 fully functional simulations of adaptive systems are included. The text and CD offer a unified view of neural networks, adaptive filters, pattern recognition, and support vector machines. Hyperlinks allow instant access to keyword definitions, bibliographic references, equations, and advanced discussions of concepts. The CD-ROM Contains: A complete, electronic version of the text in hypertext format NeuroSolutions, an industry standard, icon-based neural network/adaptive system simulator A tutorial on how to use NeuroSolutions Additional data files to use with the simulator "An innovative approach to describing neurocomputing and adaptive learning systems from a perspective which unifies classical linear adaptive systems approaches with the modern advances in neural networks. It is rich in examples and practical insight." —James Zeidler, University of California, San Diego
Dynamical Systems in Neuroscience
Author: Eugene M. Izhikevich
Publisher: MIT Press
ISBN: 0262514206
Category : Medical
Languages : en
Pages : 459
Book Description
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Publisher: MIT Press
ISBN: 0262514206
Category : Medical
Languages : en
Pages : 459
Book Description
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Pulsed Neural Networks
Author: Wolfgang Maass
Publisher: MIT Press
ISBN: 9780262632218
Category : Computers
Languages : en
Pages : 414
Book Description
Most practical applications of artificial neural networks are based on a computational model involving the propagation of continuous variables from one processing unit to the next. In recent years, data from neurobiological experiments have made it increasingly clear that biological neural networks, which communicate through pulses, use the timing of the pulses to transmit information and perform computation. This realization has stimulated significant research on pulsed neural networks, including theoretical analyses and model development, neurobiological modeling, and hardware implementation. This book presents the complete spectrum of current research in pulsed neural networks and includes the most important work from many of the key scientists in the field. Terrence J. Sejnowski's foreword, "Neural Pulse Coding," presents an overview of the topic. The first half of the book consists of longer tutorial articles spanning neurobiology, theory, algorithms, and hardware. The second half contains a larger number of shorter research chapters that present more advanced concepts. The contributors use consistent notation and terminology throughout the book. Contributors Peter S. Burge, Stephen R. Deiss, Rodney J. Douglas, John G. Elias, Wulfram Gerstner, Alister Hamilton, David Horn, Axel Jahnke, Richard Kempter, Wolfgang Maass, Alessandro Mortara, Alan F. Murray, David P. M. Northmore, Irit Opher, Kostas A. Papathanasiou, Michael Recce, Barry J. P. Rising, Ulrich Roth, Tim Schönauer, Terrence J. Sejnowski, John Shawe-Taylor, Max R. van Daalen, J. Leo van Hemmen, Philippe Venier, Hermann Wagner, Adrian M. Whatley, Anthony M. Zador
Publisher: MIT Press
ISBN: 9780262632218
Category : Computers
Languages : en
Pages : 414
Book Description
Most practical applications of artificial neural networks are based on a computational model involving the propagation of continuous variables from one processing unit to the next. In recent years, data from neurobiological experiments have made it increasingly clear that biological neural networks, which communicate through pulses, use the timing of the pulses to transmit information and perform computation. This realization has stimulated significant research on pulsed neural networks, including theoretical analyses and model development, neurobiological modeling, and hardware implementation. This book presents the complete spectrum of current research in pulsed neural networks and includes the most important work from many of the key scientists in the field. Terrence J. Sejnowski's foreword, "Neural Pulse Coding," presents an overview of the topic. The first half of the book consists of longer tutorial articles spanning neurobiology, theory, algorithms, and hardware. The second half contains a larger number of shorter research chapters that present more advanced concepts. The contributors use consistent notation and terminology throughout the book. Contributors Peter S. Burge, Stephen R. Deiss, Rodney J. Douglas, John G. Elias, Wulfram Gerstner, Alister Hamilton, David Horn, Axel Jahnke, Richard Kempter, Wolfgang Maass, Alessandro Mortara, Alan F. Murray, David P. M. Northmore, Irit Opher, Kostas A. Papathanasiou, Michael Recce, Barry J. P. Rising, Ulrich Roth, Tim Schönauer, Terrence J. Sejnowski, John Shawe-Taylor, Max R. van Daalen, J. Leo van Hemmen, Philippe Venier, Hermann Wagner, Adrian M. Whatley, Anthony M. Zador
Adaptive Control Tutorial
Author: Petros Ioannou
Publisher: SIAM
ISBN: 0898716152
Category : Mathematics
Languages : en
Pages : 401
Book Description
Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index
Publisher: SIAM
ISBN: 0898716152
Category : Mathematics
Languages : en
Pages : 401
Book Description
Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index
Advanced State Space Methods for Neural and Clinical Data
Author: Zhe Chen
Publisher: Cambridge University Press
ISBN: 1107079195
Category : Computers
Languages : en
Pages : 397
Book Description
An authoritative and in-depth treatment of state space methods, with a range of applications in neural and clinical data.
Publisher: Cambridge University Press
ISBN: 1107079195
Category : Computers
Languages : en
Pages : 397
Book Description
An authoritative and in-depth treatment of state space methods, with a range of applications in neural and clinical data.
Dynamical Systems on Networks
Author: Mason Porter
Publisher: Springer
ISBN: 3319266411
Category : Mathematics
Languages : en
Pages : 91
Book Description
This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Applied Mathematics, and co-Director of MACSI, at the University of Limerick, Ireland.
Publisher: Springer
ISBN: 3319266411
Category : Mathematics
Languages : en
Pages : 91
Book Description
This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Applied Mathematics, and co-Director of MACSI, at the University of Limerick, Ireland.
Neural Networks and Intellect
Author: Leonid I. Perlovsky
Publisher: Oxford University Press, USA
ISBN: 9780195111620
Category : Computers
Languages : en
Pages : 469
Book Description
This work describes a mathematical concept of modelling field theory and its applications to a variety of problems, while offering a view of the relationships among mathematics, computational concepts in neural networks, semiotics, and concepts of mind in psychology and philosophy.
Publisher: Oxford University Press, USA
ISBN: 9780195111620
Category : Computers
Languages : en
Pages : 469
Book Description
This work describes a mathematical concept of modelling field theory and its applications to a variety of problems, while offering a view of the relationships among mathematics, computational concepts in neural networks, semiotics, and concepts of mind in psychology and philosophy.