Author: Christos H. Papadimitriou
Publisher: MIT Press
ISBN: 0262250780
Category : Fiction
Languages : en
Pages : 274
Book Description
The world of computation according to Turing, an interactive tutoring program, as told to star-crossed lovers: a novel. Our hero is Turing, an interactive tutoring program and namesake (or virtual emanation?) of Alan Turing, World War II code breaker and father of computer science. In this unusual novel, Turing's idiosyncratic version of intellectual history from a computational point of view unfolds in tandem with the story of a love affair involving Ethel, a successful computer executive, Alexandros, a melancholy archaeologist, and Ian, a charismatic hacker. After Ethel (who shares her first name with Alan Turing's mother) abandons Alexandros following a sundrenched idyll on Corfu, Turing appears on Alexandros's computer screen to unfurl a tutorial on the history of ideas. He begins with the philosopher-mathematicians of ancient Greece—"discourse, dialogue, argument, proof... can only thrive in an egalitarian society"—and the Arab scholar in ninth-century Baghdad who invented algorithms; he moves on to many other topics, including cryptography and artificial intelligence, even economics and developmental biology. (These lessons are later critiqued amusingly and developed further in postings by a fictional newsgroup in the book's afterword.) As Turing's lectures progress, the lives of Alexandros, Ethel, and Ian converge in dramatic fashion, and the story takes us from Corfu to Hong Kong, from Athens to San Francisco—and of course to the Internet, the disruptive technological and social force that emerges as the main locale and protagonist of the novel. Alternately pedagogical and romantic, Turing (A Novel about Computation) should appeal both to students and professionals who want a clear and entertaining account of the development of computation and to the general reader who enjoys novels of ideas.
Turing (A Novel about Computation)
Hypercomputation
Author: Apostolos Syropoulos
Publisher: Springer Science & Business Media
ISBN: 0387499709
Category : Computers
Languages : en
Pages : 254
Book Description
This book provides a thorough description of hypercomputation. It covers all attempts at devising conceptual hypermachines and all new promising computational paradigms that may eventually lead to the construction of a hypermachine. Readers will gain a deeper understanding of what computability is, and why the Church-Turing thesis poses an arbitrary limit to what can be actually computed. Hypercomputing is a relatively novel idea. However, the book’s most important features are its description of the various attempts of hypercomputation, from trial-and-error machines to the exploration of the human mind, if we treat it as a computing device.
Publisher: Springer Science & Business Media
ISBN: 0387499709
Category : Computers
Languages : en
Pages : 254
Book Description
This book provides a thorough description of hypercomputation. It covers all attempts at devising conceptual hypermachines and all new promising computational paradigms that may eventually lead to the construction of a hypermachine. Readers will gain a deeper understanding of what computability is, and why the Church-Turing thesis poses an arbitrary limit to what can be actually computed. Hypercomputing is a relatively novel idea. However, the book’s most important features are its description of the various attempts of hypercomputation, from trial-and-error machines to the exploration of the human mind, if we treat it as a computing device.
Turing (A Novel about Computation)
Author: Christos H. Papadimitriou
Publisher: MIT Press
ISBN: 0262661918
Category : Fiction
Languages : en
Pages : 293
Book Description
The world of computation according to Turing, an interactive tutoring program, as told to star-crossed lovers: a novel. Our hero is Turing, an interactive tutoring program and namesake (or virtual emanation?) of Alan Turing, World War II code breaker and father of computer science. In this unusual novel, Turing's idiosyncratic version of intellectual history from a computational point of view unfolds in tandem with the story of a love affair involving Ethel, a successful computer executive, Alexandros, a melancholy archaeologist, and Ian, a charismatic hacker. After Ethel (who shares her first name with Alan Turing's mother) abandons Alexandros following a sundrenched idyll on Corfu, Turing appears on Alexandros's computer screen to unfurl a tutorial on the history of ideas. He begins with the philosopher-mathematicians of ancient Greece—"discourse, dialogue, argument, proof... can only thrive in an egalitarian society"—and the Arab scholar in ninth-century Baghdad who invented algorithms; he moves on to many other topics, including cryptography and artificial intelligence, even economics and developmental biology. (These lessons are later critiqued amusingly and developed further in postings by a fictional newsgroup in the book's afterword.) As Turing's lectures progress, the lives of Alexandros, Ethel, and Ian converge in dramatic fashion, and the story takes us from Corfu to Hong Kong, from Athens to San Francisco—and of course to the Internet, the disruptive technological and social force that emerges as the main locale and protagonist of the novel. Alternately pedagogical and romantic, Turing (A Novel about Computation) should appeal both to students and professionals who want a clear and entertaining account of the development of computation and to the general reader who enjoys novels of ideas.
Publisher: MIT Press
ISBN: 0262661918
Category : Fiction
Languages : en
Pages : 293
Book Description
The world of computation according to Turing, an interactive tutoring program, as told to star-crossed lovers: a novel. Our hero is Turing, an interactive tutoring program and namesake (or virtual emanation?) of Alan Turing, World War II code breaker and father of computer science. In this unusual novel, Turing's idiosyncratic version of intellectual history from a computational point of view unfolds in tandem with the story of a love affair involving Ethel, a successful computer executive, Alexandros, a melancholy archaeologist, and Ian, a charismatic hacker. After Ethel (who shares her first name with Alan Turing's mother) abandons Alexandros following a sundrenched idyll on Corfu, Turing appears on Alexandros's computer screen to unfurl a tutorial on the history of ideas. He begins with the philosopher-mathematicians of ancient Greece—"discourse, dialogue, argument, proof... can only thrive in an egalitarian society"—and the Arab scholar in ninth-century Baghdad who invented algorithms; he moves on to many other topics, including cryptography and artificial intelligence, even economics and developmental biology. (These lessons are later critiqued amusingly and developed further in postings by a fictional newsgroup in the book's afterword.) As Turing's lectures progress, the lives of Alexandros, Ethel, and Ian converge in dramatic fashion, and the story takes us from Corfu to Hong Kong, from Athens to San Francisco—and of course to the Internet, the disruptive technological and social force that emerges as the main locale and protagonist of the novel. Alternately pedagogical and romantic, Turing (A Novel about Computation) should appeal both to students and professionals who want a clear and entertaining account of the development of computation and to the general reader who enjoys novels of ideas.
Turing's Cathedral
Author: George Dyson
Publisher: Pantheon
ISBN: 0375422773
Category : Science
Languages : en
Pages : 466
Book Description
Documents the innovations of a group of eccentric geniuses who developed computer code in the mid-20th century as part of mathematician Alan Turin's theoretical universal machine idea, exploring how their ideas led to such developments as digital television, modern genetics and the hydrogen bomb.
Publisher: Pantheon
ISBN: 0375422773
Category : Science
Languages : en
Pages : 466
Book Description
Documents the innovations of a group of eccentric geniuses who developed computer code in the mid-20th century as part of mathematician Alan Turin's theoretical universal machine idea, exploring how their ideas led to such developments as digital television, modern genetics and the hydrogen bomb.
Turing's Vision
Author: Chris Bernhardt
Publisher: MIT Press
ISBN: 0262034549
Category : Biography & Autobiography
Languages : en
Pages : 209
Book Description
In 1936, when he was just twenty-four years old, Alan Turing wrote a remarkable paper in which he outlined the theory of computation, laying out the ideas that underlie all modern computers. This groundbreaking and powerful theory now forms the basis of computer science. In Turing's Vision, Chris Bernhardt explains the theory, Turing's most important contribution, for the general reader. Bernhardt argues that the strength of Turing's theory is its simplicity, and that, explained in a straightforward manner, it is eminently understandable by the nonspecialist. As Marvin Minsky writes, "The sheer simplicity of the theory's foundation and extraordinary short path from this foundation to its logical and surprising conclusions give the theory a mathematical beauty that alone guarantees it a permanent place in computer theory." Bernhardt begins with the foundation and systematically builds to the surprising conclusions. He also views Turing's theory in the context of mathematical history, other views of computation (including those of Alonzo Church), Turing's later work, and the birth of the modern computer. In the paper, "On Computable Numbers, with an Application to the Entscheidungsproblem," Turing thinks carefully about how humans perform computation, breaking it down into a sequence of steps, and then constructs theoretical machines capable of performing each step. Turing wanted to show that there were problems that were beyond any computer's ability to solve; in particular, he wanted to find a decision problem that he could prove was undecidable. To explain Turing's ideas, Bernhardt examines three well-known decision problems to explore the concept of undecidability; investigates theoretical computing machines, including Turing machines; explains universal machines; and proves that certain problems are undecidable, including Turing's problem concerning computable numbers.
Publisher: MIT Press
ISBN: 0262034549
Category : Biography & Autobiography
Languages : en
Pages : 209
Book Description
In 1936, when he was just twenty-four years old, Alan Turing wrote a remarkable paper in which he outlined the theory of computation, laying out the ideas that underlie all modern computers. This groundbreaking and powerful theory now forms the basis of computer science. In Turing's Vision, Chris Bernhardt explains the theory, Turing's most important contribution, for the general reader. Bernhardt argues that the strength of Turing's theory is its simplicity, and that, explained in a straightforward manner, it is eminently understandable by the nonspecialist. As Marvin Minsky writes, "The sheer simplicity of the theory's foundation and extraordinary short path from this foundation to its logical and surprising conclusions give the theory a mathematical beauty that alone guarantees it a permanent place in computer theory." Bernhardt begins with the foundation and systematically builds to the surprising conclusions. He also views Turing's theory in the context of mathematical history, other views of computation (including those of Alonzo Church), Turing's later work, and the birth of the modern computer. In the paper, "On Computable Numbers, with an Application to the Entscheidungsproblem," Turing thinks carefully about how humans perform computation, breaking it down into a sequence of steps, and then constructs theoretical machines capable of performing each step. Turing wanted to show that there were problems that were beyond any computer's ability to solve; in particular, he wanted to find a decision problem that he could prove was undecidable. To explain Turing's ideas, Bernhardt examines three well-known decision problems to explore the concept of undecidability; investigates theoretical computing machines, including Turing machines; explains universal machines; and proves that certain problems are undecidable, including Turing's problem concerning computable numbers.
The Turing Option
Author: Harry Harrison
Publisher: Hachette UK
ISBN: 0575115912
Category : Fiction
Languages : en
Pages : 338
Book Description
A young genius is hunted by killers. His sole hope for survival lies in the brain power of the intelligent being he has created. The Earth's first machine intelligence becomes the key to a harrowing battle.
Publisher: Hachette UK
ISBN: 0575115912
Category : Fiction
Languages : en
Pages : 338
Book Description
A young genius is hunted by killers. His sole hope for survival lies in the brain power of the intelligent being he has created. The Earth's first machine intelligence becomes the key to a harrowing battle.
The Annotated Turing
Author: Charles Petzold
Publisher: John Wiley & Sons
ISBN: 0470229055
Category : Computers
Languages : en
Pages : 391
Book Description
Programming Legend Charles Petzold unlocks the secrets of the extraordinary and prescient 1936 paper by Alan M. Turing Mathematician Alan Turing invented an imaginary computer known as the Turing Machine; in an age before computers, he explored the concept of what it meant to be computable, creating the field of computability theory in the process, a foundation of present-day computer programming. The book expands Turing’s original 36-page paper with additional background chapters and extensive annotations; the author elaborates on and clarifies many of Turing’s statements, making the original difficult-to-read document accessible to present day programmers, computer science majors, math geeks, and others. Interwoven into the narrative are the highlights of Turing’s own life: his years at Cambridge and Princeton, his secret work in cryptanalysis during World War II, his involvement in seminal computer projects, his speculations about artificial intelligence, his arrest and prosecution for the crime of "gross indecency," and his early death by apparent suicide at the age of 41.
Publisher: John Wiley & Sons
ISBN: 0470229055
Category : Computers
Languages : en
Pages : 391
Book Description
Programming Legend Charles Petzold unlocks the secrets of the extraordinary and prescient 1936 paper by Alan M. Turing Mathematician Alan Turing invented an imaginary computer known as the Turing Machine; in an age before computers, he explored the concept of what it meant to be computable, creating the field of computability theory in the process, a foundation of present-day computer programming. The book expands Turing’s original 36-page paper with additional background chapters and extensive annotations; the author elaborates on and clarifies many of Turing’s statements, making the original difficult-to-read document accessible to present day programmers, computer science majors, math geeks, and others. Interwoven into the narrative are the highlights of Turing’s own life: his years at Cambridge and Princeton, his secret work in cryptanalysis during World War II, his involvement in seminal computer projects, his speculations about artificial intelligence, his arrest and prosecution for the crime of "gross indecency," and his early death by apparent suicide at the age of 41.
New Computational Paradigms
Author: S.B. Cooper
Publisher: Springer Science & Business Media
ISBN: 0387685464
Category : Computers
Languages : en
Pages : 560
Book Description
This superb exposition of a complex subject examines new developments in the theory and practice of computation from a mathematical perspective, with topics ranging from classical computability to complexity, from biocomputing to quantum computing. This book is suitable for researchers and graduate students in mathematics, philosophy, and computer science with a special interest in logic and foundational issues. Most useful to graduate students are the survey papers on computable analysis and biological computing. Logicians and theoretical physicists will also benefit from this book.
Publisher: Springer Science & Business Media
ISBN: 0387685464
Category : Computers
Languages : en
Pages : 560
Book Description
This superb exposition of a complex subject examines new developments in the theory and practice of computation from a mathematical perspective, with topics ranging from classical computability to complexity, from biocomputing to quantum computing. This book is suitable for researchers and graduate students in mathematics, philosophy, and computer science with a special interest in logic and foundational issues. Most useful to graduate students are the survey papers on computable analysis and biological computing. Logicians and theoretical physicists will also benefit from this book.
Mathematics and Computation
Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Complexity and Real Computation
Author: Lenore Blum
Publisher: Springer Science & Business Media
ISBN: 1461207010
Category : Computers
Languages : en
Pages : 456
Book Description
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.
Publisher: Springer Science & Business Media
ISBN: 1461207010
Category : Computers
Languages : en
Pages : 456
Book Description
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.