Author: Roland Borghi
Publisher: John Wiley & Sons
ISBN: 1848216173
Category : Science
Languages : en
Pages : 462
Book Description
Numerous industrial systems or natural environments involve multiphase flows with heat and mass transfer. The authors of this book present the physical modeling of these flows, in a unified way, which can include various physical aspects and several levels of complexity. Thermal engineering and nuclear reactors; the extraction and transport of petroleum products; diesel and rocket engines; chemical engineering reactors and fluidized beds; smoke or aerosol dispersion; landslides and avalanches &− the modeling of multiphase flows with heat and mass transfer for all these situations can be developed following a common methodology. This book is devoted to the description of the mathematical bases of how to incorporate adequate physical ingredients in agreement with known experimental facts and how to make the model evolve according to the required complexity. Contents Part 1. Approach and General Equations 1. Towards a Unified Description of Multiphase Flows. 2. Instant Equations for a Piecewise Continuous Medium. 3. Description of a “Mean Multiphase Medium”. 4. Equations for the Mean Continuous Medium. Part 2. Modeling: A Single Approach Adaptable to Multiple Applications 5. The Modeling of Interphase Exchanges. 6. Modeling Turbulent Dispersion Fluxes. 7. Modeling the Mean Gas–Liquid Interface Area per Unit Volume. 8. “Large Eddy Simulation” Style Models. 9. Contribution of Thermodynamics of Irreversible Processes. 10. Experimental Methods. 11. Some Experimental Results Pertaining to Multiphase Flow Properties that Are Still Little Understood. Part 3. From Fluidized Beds to Granular Media 12. Fluidized Beds. 13. Generalizations for Granular Media. 14. Modeling of Cauchy Tensor of Sliding Contacts. 15. Modeling the Kinetic Cauchy Stress Tensor. Part 4. Studying Fluctuations and Probability Densities 16. Fluctuations of the Gas Phase in Reactive Two-Phase Media. 17. Temperature Fluctuations in Condensed Phases. 18. Study of the PDF for Velocity Fluctuations and Sizes of Parcels. About the Authors Roland Borghi is Professor Emeritus at Ecole Centrale Marseille in France and works as a consultant in the space, petrol and automobile sectors. His research activities cover fluid mechanics, combustion and flames, and multi-phase and granular flows. He was a member of the CNRS scientific committee and a laureate of the French Academy of Science. Fabien Anselmet is Professor at Ecole Centrale Marseille in France. His research activities focus on the turbulence of fluids and its varied applications in industry and in fields linked to the environment. With a unified, didactic style, this text presents tangible models of multiphase flows with heat and mass transfer with attention to various levels of complexities. It addresses thermal engineering and nuclear reactors, extraction and transport of petroleum products, diesel engines and rocket engines, chemical engineering reactors and fluidized beds, smoke or aerosol dispersion, and landslides and avalanches. Engineers, researchers, and scientists will appreciate the discussions of modeling principles, flows and granular media, and fluctuations around averages.
Turbulent Multiphase Flows with Heat and Mass Transfer
Author: Roland Borghi
Publisher: John Wiley & Sons
ISBN: 1848216173
Category : Science
Languages : en
Pages : 462
Book Description
Numerous industrial systems or natural environments involve multiphase flows with heat and mass transfer. The authors of this book present the physical modeling of these flows, in a unified way, which can include various physical aspects and several levels of complexity. Thermal engineering and nuclear reactors; the extraction and transport of petroleum products; diesel and rocket engines; chemical engineering reactors and fluidized beds; smoke or aerosol dispersion; landslides and avalanches &− the modeling of multiphase flows with heat and mass transfer for all these situations can be developed following a common methodology. This book is devoted to the description of the mathematical bases of how to incorporate adequate physical ingredients in agreement with known experimental facts and how to make the model evolve according to the required complexity. Contents Part 1. Approach and General Equations 1. Towards a Unified Description of Multiphase Flows. 2. Instant Equations for a Piecewise Continuous Medium. 3. Description of a “Mean Multiphase Medium”. 4. Equations for the Mean Continuous Medium. Part 2. Modeling: A Single Approach Adaptable to Multiple Applications 5. The Modeling of Interphase Exchanges. 6. Modeling Turbulent Dispersion Fluxes. 7. Modeling the Mean Gas–Liquid Interface Area per Unit Volume. 8. “Large Eddy Simulation” Style Models. 9. Contribution of Thermodynamics of Irreversible Processes. 10. Experimental Methods. 11. Some Experimental Results Pertaining to Multiphase Flow Properties that Are Still Little Understood. Part 3. From Fluidized Beds to Granular Media 12. Fluidized Beds. 13. Generalizations for Granular Media. 14. Modeling of Cauchy Tensor of Sliding Contacts. 15. Modeling the Kinetic Cauchy Stress Tensor. Part 4. Studying Fluctuations and Probability Densities 16. Fluctuations of the Gas Phase in Reactive Two-Phase Media. 17. Temperature Fluctuations in Condensed Phases. 18. Study of the PDF for Velocity Fluctuations and Sizes of Parcels. About the Authors Roland Borghi is Professor Emeritus at Ecole Centrale Marseille in France and works as a consultant in the space, petrol and automobile sectors. His research activities cover fluid mechanics, combustion and flames, and multi-phase and granular flows. He was a member of the CNRS scientific committee and a laureate of the French Academy of Science. Fabien Anselmet is Professor at Ecole Centrale Marseille in France. His research activities focus on the turbulence of fluids and its varied applications in industry and in fields linked to the environment. With a unified, didactic style, this text presents tangible models of multiphase flows with heat and mass transfer with attention to various levels of complexities. It addresses thermal engineering and nuclear reactors, extraction and transport of petroleum products, diesel engines and rocket engines, chemical engineering reactors and fluidized beds, smoke or aerosol dispersion, and landslides and avalanches. Engineers, researchers, and scientists will appreciate the discussions of modeling principles, flows and granular media, and fluctuations around averages.
Publisher: John Wiley & Sons
ISBN: 1848216173
Category : Science
Languages : en
Pages : 462
Book Description
Numerous industrial systems or natural environments involve multiphase flows with heat and mass transfer. The authors of this book present the physical modeling of these flows, in a unified way, which can include various physical aspects and several levels of complexity. Thermal engineering and nuclear reactors; the extraction and transport of petroleum products; diesel and rocket engines; chemical engineering reactors and fluidized beds; smoke or aerosol dispersion; landslides and avalanches &− the modeling of multiphase flows with heat and mass transfer for all these situations can be developed following a common methodology. This book is devoted to the description of the mathematical bases of how to incorporate adequate physical ingredients in agreement with known experimental facts and how to make the model evolve according to the required complexity. Contents Part 1. Approach and General Equations 1. Towards a Unified Description of Multiphase Flows. 2. Instant Equations for a Piecewise Continuous Medium. 3. Description of a “Mean Multiphase Medium”. 4. Equations for the Mean Continuous Medium. Part 2. Modeling: A Single Approach Adaptable to Multiple Applications 5. The Modeling of Interphase Exchanges. 6. Modeling Turbulent Dispersion Fluxes. 7. Modeling the Mean Gas–Liquid Interface Area per Unit Volume. 8. “Large Eddy Simulation” Style Models. 9. Contribution of Thermodynamics of Irreversible Processes. 10. Experimental Methods. 11. Some Experimental Results Pertaining to Multiphase Flow Properties that Are Still Little Understood. Part 3. From Fluidized Beds to Granular Media 12. Fluidized Beds. 13. Generalizations for Granular Media. 14. Modeling of Cauchy Tensor of Sliding Contacts. 15. Modeling the Kinetic Cauchy Stress Tensor. Part 4. Studying Fluctuations and Probability Densities 16. Fluctuations of the Gas Phase in Reactive Two-Phase Media. 17. Temperature Fluctuations in Condensed Phases. 18. Study of the PDF for Velocity Fluctuations and Sizes of Parcels. About the Authors Roland Borghi is Professor Emeritus at Ecole Centrale Marseille in France and works as a consultant in the space, petrol and automobile sectors. His research activities cover fluid mechanics, combustion and flames, and multi-phase and granular flows. He was a member of the CNRS scientific committee and a laureate of the French Academy of Science. Fabien Anselmet is Professor at Ecole Centrale Marseille in France. His research activities focus on the turbulence of fluids and its varied applications in industry and in fields linked to the environment. With a unified, didactic style, this text presents tangible models of multiphase flows with heat and mass transfer with attention to various levels of complexities. It addresses thermal engineering and nuclear reactors, extraction and transport of petroleum products, diesel engines and rocket engines, chemical engineering reactors and fluidized beds, smoke or aerosol dispersion, and landslides and avalanches. Engineers, researchers, and scientists will appreciate the discussions of modeling principles, flows and granular media, and fluctuations around averages.
Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows
Author: Lixing Zhou
Publisher: Butterworth-Heinemann
ISBN: 0128134666
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering. - Provides a combination of multiphase fluid dynamics, turbulence theory and combustion theory - Covers physical phenomena, numerical modeling theory and methods, and their applications - Presents applications in a wide range of engineering facilities, such as utility and industrial furnaces, gas-turbine and rocket engines, internal combustion engines, chemical reactors, and cyclone separators, etc.
Publisher: Butterworth-Heinemann
ISBN: 0128134666
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering. - Provides a combination of multiphase fluid dynamics, turbulence theory and combustion theory - Covers physical phenomena, numerical modeling theory and methods, and their applications - Presents applications in a wide range of engineering facilities, such as utility and industrial furnaces, gas-turbine and rocket engines, internal combustion engines, chemical reactors, and cyclone separators, etc.
Flow and Heat and Mass Transfer in Laminar and Turbulent Mist Gas-Droplets Stream over a Flat Plate
Author: Victor I. Terekhov
Publisher: Springer
ISBN: 3319044532
Category : Technology & Engineering
Languages : en
Pages : 64
Book Description
In this book the author presents selected challenges of thermal-hydraulics modeling of two-phase flows in minichannels with change of phase. These encompass the common modeling of flow boiling and flow condensation using the same expression. Approaches to model these two respective cases show, however, that experimental data show different results to those obtained by methods of calculation of heat transfer coefficient for respective cases. Partially that can be devoted to the fact that there are non-adiabatic effects present in both types of phase change phenomena which modify the pressure drop due to friction, responsible for appropriate modelling. The modification of interface shear stresses between flow boiling and flow condensation in case of annular flow structure may be considered through incorporation of the so called blowing parameter, which differentiates between these two modes of heat transfer. On the other hand, in case of bubbly flows, the generation of bubbles also modifies the friction pressure drop by the influence of heat flux. Presented are also the results of a peculiar M-shape distribution of heat transfer coefficient specific to flow boiling in minichannels. Finally, some attention is devoted to mathematical modeling of dryout phenomena. A five equation model enabling determination of the dryout location is presented, where the mass balance equations for liquid film, droplets and gas are supplemented by momentum equations for liquid film and two-phase core.
Publisher: Springer
ISBN: 3319044532
Category : Technology & Engineering
Languages : en
Pages : 64
Book Description
In this book the author presents selected challenges of thermal-hydraulics modeling of two-phase flows in minichannels with change of phase. These encompass the common modeling of flow boiling and flow condensation using the same expression. Approaches to model these two respective cases show, however, that experimental data show different results to those obtained by methods of calculation of heat transfer coefficient for respective cases. Partially that can be devoted to the fact that there are non-adiabatic effects present in both types of phase change phenomena which modify the pressure drop due to friction, responsible for appropriate modelling. The modification of interface shear stresses between flow boiling and flow condensation in case of annular flow structure may be considered through incorporation of the so called blowing parameter, which differentiates between these two modes of heat transfer. On the other hand, in case of bubbly flows, the generation of bubbles also modifies the friction pressure drop by the influence of heat flux. Presented are also the results of a peculiar M-shape distribution of heat transfer coefficient specific to flow boiling in minichannels. Finally, some attention is devoted to mathematical modeling of dryout phenomena. A five equation model enabling determination of the dryout location is presented, where the mass balance equations for liquid film, droplets and gas are supplemented by momentum equations for liquid film and two-phase core.
Transport Phenomena
Author: Robert S. Brodkey
Publisher: Brodkey Publishing
ISBN: 9780972663588
Category : Science
Languages : en
Pages : 522
Book Description
Part II covers applications in greater detail. The three transport phenomena--heat, mass, and momentum transfer--are treated in depth through simultaneous (or parallel) developments.
Publisher: Brodkey Publishing
ISBN: 9780972663588
Category : Science
Languages : en
Pages : 522
Book Description
Part II covers applications in greater detail. The three transport phenomena--heat, mass, and momentum transfer--are treated in depth through simultaneous (or parallel) developments.
Numerical Simulation of Multiphase Reactors with Continuous Liquid
Author: Chao Yang
Publisher: Academic Press
ISBN: 9780080999197
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
Numerical simulation of multiphase reactors with continuous liquid phase provides current research and findings in multiphase problems, which will assist researchers and engineers to advance this field. This is an ideal reference book for readers who are interested in design and scale-up of multiphase reactors and crystallizers, and using mathematical model and numerical simulation as tools. Yang and Mao's book focuses on modeling and numerical applications directly in the chemical, petrochemical, and hydrometallurgical industries, rather than theories of multiphase flow. The content will help you to solve reacting flow problems and/or system design/optimization problems. The fundamentals and principles of flow and mass transfer in multiphase reactors with continuous liquid phase are covered, which will aid the reader's understanding of multiphase reaction engineering. Provides practical applications for using multiphase stirred tanks, reactors, and microreactors, with detailed explanation of investigation methods. Presents the most recent research efforts in this highly active field on multiphase reactors and crystallizers. Covers mathematical models, numerical methods and experimental techniques for multiphase flow and mass transfer in reactors and crystallizers.
Publisher: Academic Press
ISBN: 9780080999197
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
Numerical simulation of multiphase reactors with continuous liquid phase provides current research and findings in multiphase problems, which will assist researchers and engineers to advance this field. This is an ideal reference book for readers who are interested in design and scale-up of multiphase reactors and crystallizers, and using mathematical model and numerical simulation as tools. Yang and Mao's book focuses on modeling and numerical applications directly in the chemical, petrochemical, and hydrometallurgical industries, rather than theories of multiphase flow. The content will help you to solve reacting flow problems and/or system design/optimization problems. The fundamentals and principles of flow and mass transfer in multiphase reactors with continuous liquid phase are covered, which will aid the reader's understanding of multiphase reaction engineering. Provides practical applications for using multiphase stirred tanks, reactors, and microreactors, with detailed explanation of investigation methods. Presents the most recent research efforts in this highly active field on multiphase reactors and crystallizers. Covers mathematical models, numerical methods and experimental techniques for multiphase flow and mass transfer in reactors and crystallizers.
Fundamentals of Multiphase Flow
Author: Christopher E. Brennen
Publisher: Cambridge University Press
ISBN: 9780521848046
Category : Science
Languages : en
Pages : 376
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521848046
Category : Science
Languages : en
Pages : 376
Book Description
Publisher Description
Transport Phenomena in Multiphase Flows
Author: Roberto Mauri
Publisher: Springer
ISBN: 3319157930
Category : Science
Languages : en
Pages : 458
Book Description
This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy. It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory or for an advanced graduate course. The last 6 chapters will be of interest to more advanced researchers who might be interested in particular applications in physics, mechanical engineering or biomedical engineering. All chapters are complemented with exercises that are essential to complete the learning process.
Publisher: Springer
ISBN: 3319157930
Category : Science
Languages : en
Pages : 458
Book Description
This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy. It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory or for an advanced graduate course. The last 6 chapters will be of interest to more advanced researchers who might be interested in particular applications in physics, mechanical engineering or biomedical engineering. All chapters are complemented with exercises that are essential to complete the learning process.
Advances in Multiphase Flow and Heat Transfer
Author: Lixin Cheng
Publisher: Bentham Science Publishers
ISBN: 160805229X
Category : Science
Languages : en
Pages : 215
Book Description
"Multiphase flow and heat transfer have found a wide range of applications in several engineering and science fields such as mechanical engineering, chemical and petrochemical engineering, nuclear engineering, energy engineering, material engineering, ocea"
Publisher: Bentham Science Publishers
ISBN: 160805229X
Category : Science
Languages : en
Pages : 215
Book Description
"Multiphase flow and heat transfer have found a wide range of applications in several engineering and science fields such as mechanical engineering, chemical and petrochemical engineering, nuclear engineering, energy engineering, material engineering, ocea"
Multiphase Flow Handbook, Second Edition
Author: Efstathios Michaelides
Publisher: CRC Press
ISBN: 1315354624
Category : Science
Languages : en
Pages : 1559
Book Description
The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.
Publisher: CRC Press
ISBN: 1315354624
Category : Science
Languages : en
Pages : 1559
Book Description
The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.
Computational Fluid Dynamics for Engineers
Author: Bengt Andersson
Publisher: Cambridge University Press
ISBN: 1139505564
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.
Publisher: Cambridge University Press
ISBN: 1139505564
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.