Author: Matt Harrison
Publisher: Matt Harrison
ISBN: 1475266413
Category : Computers
Languages : en
Pages : 170
Book Description
Treading on Python is designed to bring developers and others who are anxious to learn Python up to speed quickly. Not only does it teach the basics of syntax, but it condenses years of experience. You will learn warts, gotchas, best practices and hints that have been gleaned through the years in days. You will hit the ground running and running in the right way.
Treading on Python Volume 1
Author: Matt Harrison
Publisher: Matt Harrison
ISBN: 1475266413
Category : Computers
Languages : en
Pages : 170
Book Description
Treading on Python is designed to bring developers and others who are anxious to learn Python up to speed quickly. Not only does it teach the basics of syntax, but it condenses years of experience. You will learn warts, gotchas, best practices and hints that have been gleaned through the years in days. You will hit the ground running and running in the right way.
Publisher: Matt Harrison
ISBN: 1475266413
Category : Computers
Languages : en
Pages : 170
Book Description
Treading on Python is designed to bring developers and others who are anxious to learn Python up to speed quickly. Not only does it teach the basics of syntax, but it condenses years of experience. You will learn warts, gotchas, best practices and hints that have been gleaned through the years in days. You will hit the ground running and running in the right way.
Treading on Python Volume 2
Author: Matt Harrison
Publisher: Matt Harrison
ISBN: 149055095X
Category : Computers
Languages : en
Pages : 162
Book Description
Do you want to take your Python to the next level? Python is easy to learn. You can learn the basics in a day and be productive with it. But there are more advanced constructs that you will eventually run across if you spend enough time with it. Don't be confused by these. Learn them, embrace them, and improve your code and others.
Publisher: Matt Harrison
ISBN: 149055095X
Category : Computers
Languages : en
Pages : 162
Book Description
Do you want to take your Python to the next level? Python is easy to learn. You can learn the basics in a day and be productive with it. But there are more advanced constructs that you will eventually run across if you spend enough time with it. Don't be confused by these. Learn them, embrace them, and improve your code and others.
Illustrated Guide to Python 3
Author: Matt Harrison
Publisher: Createspace Independent Publishing Platform
ISBN: 9781977921758
Category : Python (Computer program language)
Languages : en
Pages : 256
Book Description
Introducing Your Guide to Learning PythonIllustrated Guide to Learning Python is designed to bring developers and others who are anxious to learn Python up to speed quickly. Not only does it teach the basics of syntax, but it condenses years of experience. You will learn warts, gotchas, best practices and hints that have been gleaned through the years in days. You will hit the ground running and running in the right way.Learn Python QuicklyPython is an incredible language. It is powerful and applicable in many areas. It is used for automation of simple or complex tasks, numerical processing, web development, interactive games and more. Whether you are a programmer coming to Python from another language, managing Python programmers or wanting to learn to program, it makes sense to cut to the chase and learn Python the right way. You could scour blogs, websites and much longer tomes if you have time. Treading on Python lets you learn the hints and tips to be Pythonic quickly.Packed with Useful Hints and TipsYou'll learn the best practices without wasting time searching or trying to force Python to be like other languages. I've collected all the gems I've gleaned over years of writing and teaching Python for you.A No Nonsense Guide to Mastering Basic PythonPython is a programming language that lets you work more quickly and integrate your systems more effectively. You can learn to use Python and see almost immediate gains in productivity and lower maintenance costs.What you will learn: Distilled best practices and tips How interpreted languages work Using basic types such as Strings, Integers, and Floats Best practices for using the interpreter during development The difference between mutable and immutable data Sets, Lists, and Dictionaries, and when to use each Gathering keyboard input How to define a class Looping constructs Handling Exceptions in code Slicing sequences Creating modular code Using libraries Laying out code Community prescribed conventions
Publisher: Createspace Independent Publishing Platform
ISBN: 9781977921758
Category : Python (Computer program language)
Languages : en
Pages : 256
Book Description
Introducing Your Guide to Learning PythonIllustrated Guide to Learning Python is designed to bring developers and others who are anxious to learn Python up to speed quickly. Not only does it teach the basics of syntax, but it condenses years of experience. You will learn warts, gotchas, best practices and hints that have been gleaned through the years in days. You will hit the ground running and running in the right way.Learn Python QuicklyPython is an incredible language. It is powerful and applicable in many areas. It is used for automation of simple or complex tasks, numerical processing, web development, interactive games and more. Whether you are a programmer coming to Python from another language, managing Python programmers or wanting to learn to program, it makes sense to cut to the chase and learn Python the right way. You could scour blogs, websites and much longer tomes if you have time. Treading on Python lets you learn the hints and tips to be Pythonic quickly.Packed with Useful Hints and TipsYou'll learn the best practices without wasting time searching or trying to force Python to be like other languages. I've collected all the gems I've gleaned over years of writing and teaching Python for you.A No Nonsense Guide to Mastering Basic PythonPython is a programming language that lets you work more quickly and integrate your systems more effectively. You can learn to use Python and see almost immediate gains in productivity and lower maintenance costs.What you will learn: Distilled best practices and tips How interpreted languages work Using basic types such as Strings, Integers, and Floats Best practices for using the interpreter during development The difference between mutable and immutable data Sets, Lists, and Dictionaries, and when to use each Gathering keyboard input How to define a class Looping constructs Handling Exceptions in code Slicing sequences Creating modular code Using libraries Laying out code Community prescribed conventions
Learning the Pandas Library
Author: Matt Harrison
Publisher: Createspace Independent Publishing Platform
ISBN: 9781533598240
Category : Data mining
Languages : en
Pages : 0
Book Description
Python is one of the top 3 tools that Data Scientists use. One of the tools in their arsenal is the Pandas library. This tool is popular because it gives you so much functionality out of the box. In addition, you can use all the power of Python to make the hard stuff easy! Learning the Pandas Library is designed to bring developers and aspiring data scientists who are anxious to learn Pandas up to speed quickly. It starts with the fundamentals of the data structures. Then, it covers the essential functionality. It includes many examples, graphics, code samples, and plots from real world examples. The Content Covers: Installation Data Structures Series CRUD Series Indexing Series Methods Series Plotting Series Examples DataFrame Methods DataFrame Statistics Grouping, Pivoting, and Reshaping Dealing with Missing Data Joining DataFrames DataFrame Examples Preliminary Reviews This is an excellent introduction benefitting from clear writing and simple examples. The pandas documentation itself is large and sometimes assumes too much knowledge, in my opinion. Learning the Pandas Library bridges this gap for new users and even for those with some pandas experience such as me. -Garry C. I have finished reading Learning the Pandas Library and I liked it... very useful and helpful tips even for people who use pandas regularly. -Tom Z.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781533598240
Category : Data mining
Languages : en
Pages : 0
Book Description
Python is one of the top 3 tools that Data Scientists use. One of the tools in their arsenal is the Pandas library. This tool is popular because it gives you so much functionality out of the box. In addition, you can use all the power of Python to make the hard stuff easy! Learning the Pandas Library is designed to bring developers and aspiring data scientists who are anxious to learn Pandas up to speed quickly. It starts with the fundamentals of the data structures. Then, it covers the essential functionality. It includes many examples, graphics, code samples, and plots from real world examples. The Content Covers: Installation Data Structures Series CRUD Series Indexing Series Methods Series Plotting Series Examples DataFrame Methods DataFrame Statistics Grouping, Pivoting, and Reshaping Dealing with Missing Data Joining DataFrames DataFrame Examples Preliminary Reviews This is an excellent introduction benefitting from clear writing and simple examples. The pandas documentation itself is large and sometimes assumes too much knowledge, in my opinion. Learning the Pandas Library bridges this gap for new users and even for those with some pandas experience such as me. -Garry C. I have finished reading Learning the Pandas Library and I liked it... very useful and helpful tips even for people who use pandas regularly. -Tom Z.
Learn Python 3 the Hard Way
Author: Zed A. Shaw
Publisher: Addison-Wesley Professional
ISBN: 0134693906
Category : Computers
Languages : en
Pages : 752
Book Description
You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Python 3 the Hard Way, you’ll learn Python by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how a computer works; what good programs look like; and how to read, write, and think about code. Zed then teaches you even more in 5+ hours of video where he shows you how to break, fix, and debug your code—live, as he’s doing the exercises. Install a complete Python environment Organize and write code Fix and break code Basic mathematics Variables Strings and text Interact with users Work with files Looping and logic Data structures using lists and dictionaries Program design Object-oriented programming Inheritance and composition Modules, classes, and objects Python packaging Automated testing Basic game development Basic web development It’ll be hard at first. But soon, you’ll just get it—and that will feel great! This course will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Python programmer. This Book Is Perfect For Total beginners with zero programming experience Junior developers who know one or two languages Returning professionals who haven’t written code in years Seasoned professionals looking for a fast, simple, crash course in Python 3
Publisher: Addison-Wesley Professional
ISBN: 0134693906
Category : Computers
Languages : en
Pages : 752
Book Description
You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Python 3 the Hard Way, you’ll learn Python by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how a computer works; what good programs look like; and how to read, write, and think about code. Zed then teaches you even more in 5+ hours of video where he shows you how to break, fix, and debug your code—live, as he’s doing the exercises. Install a complete Python environment Organize and write code Fix and break code Basic mathematics Variables Strings and text Interact with users Work with files Looping and logic Data structures using lists and dictionaries Program design Object-oriented programming Inheritance and composition Modules, classes, and objects Python packaging Automated testing Basic game development Basic web development It’ll be hard at first. But soon, you’ll just get it—and that will feel great! This course will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Python programmer. This Book Is Perfect For Total beginners with zero programming experience Junior developers who know one or two languages Returning professionals who haven’t written code in years Seasoned professionals looking for a fast, simple, crash course in Python 3
Python for Algorithmic Trading
Author: Yves Hilpisch
Publisher: O'Reilly Media
ISBN: 1492053325
Category : Computers
Languages : en
Pages : 380
Book Description
Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
Publisher: O'Reilly Media
ISBN: 1492053325
Category : Computers
Languages : en
Pages : 380
Book Description
Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
Python for Probability, Statistics, and Machine Learning
Author: José Unpingco
Publisher: Springer
ISBN: 3030185451
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
Publisher: Springer
ISBN: 3030185451
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
Python for Finance
Author: Yves J. Hilpisch
Publisher: "O'Reilly Media, Inc."
ISBN: 1492024295
Category : Computers
Languages : en
Pages : 682
Book Description
The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Publisher: "O'Reilly Media, Inc."
ISBN: 1492024295
Category : Computers
Languages : en
Pages : 682
Book Description
The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Classic Computer Science Problems in Python
Author: David Kopec
Publisher: Simon and Schuster
ISBN: 1638355231
Category : Computers
Languages : en
Pages : 331
Book Description
"Whether you're a novice or a seasoned professional, there's an Aha! moment in this book for everyone." - James Watson, Adaptive ”Highly recommended to everyone interested in deepening their understanding of Python and practical computer science.” —Daniel Kenney-Jung, MD, University of Minnesota Key Features • Master formal techniques taught in college computer science classes • Connect computer science theory to real-world applications, data, and performance • Prepare for programmer interviews • Recognize the core ideas behind most “new” challenges • Covers Python 3.7 Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Programming problems that seem new or unique are usually rooted in well-known engineering principles. Classic Computer Science Problems in Python guides you through time-tested scenarios, exercises, and algorithms that will prepare you for the “new” problems you’ll face when you start your next project. In this amazing book, you'll tackle dozens of coding challenges, ranging from simple tasks like binary search algorithms to clustering data using k-means. As you work through examples for web development, machine learning, and more, you'll remember important things you've forgotten and discover classic solutions that will save you hours of time. What You Will Learn • Search algorithms • Common techniques for graphs • Neural networks • Genetic algorithms • Adversarial search • Uses type hints throughout This Book Is Written For For intermediate Python programmers. About The Author David Kopec is an assistant professor of Computer Science and Innovation at Champlain College in Burlington, Vermont. He is the author of Dart for Absolute Beginners (Apress, 2014), Classic Computer Science Problems in Swift (Manning, 2018), and Classic Computer Science Problems in Java (Manning, 2020) Table of Contents 1. Small problems 2. Search problems 3. Constraint-satisfaction problems 4. Graph problems 5. Genetic algorithms 6. K-means clustering 7. Fairly simple neural networks 8. Adversarial search 9. Miscellaneous problems
Publisher: Simon and Schuster
ISBN: 1638355231
Category : Computers
Languages : en
Pages : 331
Book Description
"Whether you're a novice or a seasoned professional, there's an Aha! moment in this book for everyone." - James Watson, Adaptive ”Highly recommended to everyone interested in deepening their understanding of Python and practical computer science.” —Daniel Kenney-Jung, MD, University of Minnesota Key Features • Master formal techniques taught in college computer science classes • Connect computer science theory to real-world applications, data, and performance • Prepare for programmer interviews • Recognize the core ideas behind most “new” challenges • Covers Python 3.7 Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Programming problems that seem new or unique are usually rooted in well-known engineering principles. Classic Computer Science Problems in Python guides you through time-tested scenarios, exercises, and algorithms that will prepare you for the “new” problems you’ll face when you start your next project. In this amazing book, you'll tackle dozens of coding challenges, ranging from simple tasks like binary search algorithms to clustering data using k-means. As you work through examples for web development, machine learning, and more, you'll remember important things you've forgotten and discover classic solutions that will save you hours of time. What You Will Learn • Search algorithms • Common techniques for graphs • Neural networks • Genetic algorithms • Adversarial search • Uses type hints throughout This Book Is Written For For intermediate Python programmers. About The Author David Kopec is an assistant professor of Computer Science and Innovation at Champlain College in Burlington, Vermont. He is the author of Dart for Absolute Beginners (Apress, 2014), Classic Computer Science Problems in Swift (Manning, 2018), and Classic Computer Science Problems in Java (Manning, 2020) Table of Contents 1. Small problems 2. Search problems 3. Constraint-satisfaction problems 4. Graph problems 5. Genetic algorithms 6. K-means clustering 7. Fairly simple neural networks 8. Adversarial search 9. Miscellaneous problems
Machine Learning Pocket Reference
Author: Matt Harrison
Publisher: "O'Reilly Media, Inc."
ISBN: 149204749X
Category : Computers
Languages : en
Pages : 230
Book Description
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines
Publisher: "O'Reilly Media, Inc."
ISBN: 149204749X
Category : Computers
Languages : en
Pages : 230
Book Description
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines