Transport and Surface Phenomena

Transport and Surface Phenomena PDF Author: Kamil Wichterle
Publisher: Elsevier
ISBN: 0128189940
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description
Transport and Surface Phenomena provides an overview of the key transfers taking place in reactions and explores how calculations of momentum, energy and mass transfers can help researchers develop the most appropriate, cost effective solutions to chemical problems. Beginning with a thorough overview of the nature of transport phenomena, the book goes on to explore balances in transport phenomena, including key equations for assessing balances, before concluding by outlining mathematical methods for solving the transfer equations. Drawing on the experience of its expert authors, it is an accessible introduction to the field for students, researchers and professionals working in chemical engineering. The book and is also ideal for those in related fields such as physical chemistry, energy engineering, and materials science, for whom a deeper understanding of these interactions could enhance their work.

Transport and Surface Phenomena

Transport and Surface Phenomena PDF Author: Kamil Wichterle
Publisher: Elsevier
ISBN: 0128189940
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description
Transport and Surface Phenomena provides an overview of the key transfers taking place in reactions and explores how calculations of momentum, energy and mass transfers can help researchers develop the most appropriate, cost effective solutions to chemical problems. Beginning with a thorough overview of the nature of transport phenomena, the book goes on to explore balances in transport phenomena, including key equations for assessing balances, before concluding by outlining mathematical methods for solving the transfer equations. Drawing on the experience of its expert authors, it is an accessible introduction to the field for students, researchers and professionals working in chemical engineering. The book and is also ideal for those in related fields such as physical chemistry, energy engineering, and materials science, for whom a deeper understanding of these interactions could enhance their work.

Advanced Transport Phenomena

Advanced Transport Phenomena PDF Author: L. Gary Leal
Publisher: Cambridge University Press
ISBN: 1139462067
Category : Technology & Engineering
Languages : en
Pages : 7

Get Book Here

Book Description
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.

Interfacial Transport Phenomena

Interfacial Transport Phenomena PDF Author: John C. Slattery
Publisher: Springer Science & Business Media
ISBN: 1475720904
Category : Science
Languages : en
Pages : 1174

Get Book Here

Book Description
Transport phenomena is used here to descril>e momentum, energy, mass, and entropy transfer (Bird et al. 1960, 1980). It includes thermodynamies, a special case of which is thermostatics. Interfacial transport phenomena refers to momentum, energy , mass, and entropy transfer within the immediate neighborhood of a phase interface, including the thermodynamies of the interface. In terms of qualitative physical observations, this is a very old field. Pliny the EIder (Gaius Plinius Secundus, 23-79 A.D.; Pliny 1938) described divers who released small quantities of oil from their mouths, in order to damp capillary ripples on the ocean surface and in this way provide more uniform lighting for their work. Similar stories were retold by Benjamin Franklin, who conducted experiments of his own in England (V an Doren 1938). In terms of analysis, this is a generally young field. Surface thermostatics developed relatively early, starting with Gibbs (1948) and continuing with important contributions by many others (see Chapter 5).

Transport Phenomena in Multiphase Systems

Transport Phenomena in Multiphase Systems PDF Author: Amir Faghri
Publisher: Academic Press
ISBN:
Category : Multiphase flow
Languages : en
Pages : 1072

Get Book Here

Book Description
Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors

Transport Phenomena in Microfluidic Systems

Transport Phenomena in Microfluidic Systems PDF Author: Pradipta Kumar Panigrahi
Publisher: John Wiley & Sons
ISBN: 1118298411
Category : Science
Languages : en
Pages : 554

Get Book Here

Book Description
Fully comprehensive introduction to the rapidly emerging area of micro systems technology Transport Phenomena in Micro Systems explores the fundamentals of the new technologies related to Micro-Electro-Mechanical Systems (MEMS). It deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale, such as nl, pl, fl, small size, low energy consumption, effects of the micro domain and heat transfer in the related devices. The author describes in detail and with extensive illustration micro fabrication, channel flow, transport laws, magnetophoresis, micro scale convection and micro sensors and activators, among others. This book spans multidisciplinary fields such as material science and mechanical engineering, engineering, physics, chemistry, microtechnology and biotechnology. Brings together in one collection recent and emerging developments in this fast-growing area of micro systems Covers multidisciplinary fields such as materials science, mechanical engineering, microtechnology and biotechnology, et al Comprehensive coverage of analytical models in microfluidics and MEMS technology Introduces micro fluidics applications include the development of inkjet printheads, micro-propulsion, and micro thermal technologies Presented in a very logical format Supplies readers with problems and solutions

Introduction to Modeling of Transport Phenomena in Porous Media

Introduction to Modeling of Transport Phenomena in Porous Media PDF Author: Jacob Bear
Publisher: Springer Science & Business Media
ISBN: 9400919263
Category : Science
Languages : en
Pages : 575

Get Book Here

Book Description
The main purpose of this book is to provide the theoretical background to engineers and scientists engaged in modeling transport phenomena in porous media, in connection with various engineering projects, and to serve as a text for senior and graduate courses on transport phenomena in porous media. Such courses are taught in various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricultural engineering and soil science. In these disciplines, problems are encountered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often the porous material contains several fluid phases, and the various extensive quantities are transported simultaneously throughout the multiphase system. In all these disciplines, management decisions related to a system's development and its operation have to be made. To do so, the 'manager', or the planner, needs a tool that will enable him to forecast the response of the system to the implementation of proposed management schemes. This forecast takes the form of spatial and temporal distributions of variables that describe the future state of the considered system. Pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, and sometime for a component of a phase, may serve as examples of state variables. The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real (porous medium) system that approximately simulates the excitation-response relations of the latter.

Transport Phenomena in Dispersed Media

Transport Phenomena in Dispersed Media PDF Author: G. I. Kelbaliyev
Publisher: CRC Press
ISBN: 0429535910
Category : Science
Languages : en
Pages : 417

Get Book Here

Book Description
Transport Phenomena in Dispersed Media addresses the main problems associated with the transfer of heat, mass and momentum. The authors focus on the analytical solutions of the mass and heat transfer equations; the theoretical problems of coalescence, coagulation, aggregation and fragmentation of dispersed particles; the rheology of structured aggregate and kinetically stable disperse systems; the precipitation of particles in a turbulent flow; the evolution of the distribution function; the stochastic counterpart of the mass transfer equations; the dissipation of energy in disperse systems; and many other problems that distinguish this book from existing publications. Key Selling Features Covers all technological processes taking place in the oil and gas complex, as well as in the petrochemical industry Presents new original solutions for calculating design as well as for the development and implementation of processes of chemical technology Organized to first provide an extensive review of each chapter topic, solve specific problems, and then review the solutions with the reader Contains complex mathematical expressions for practical calculations Compares results obtained on the basis of mathematical models with experimental data

Environmental Transport Phenomena

Environmental Transport Phenomena PDF Author: A. Eduardo Saez
Publisher: CRC Press
ISBN: 1466576243
Category : Science
Languages : en
Pages : 241

Get Book Here

Book Description
This book offers a detailed yet accessible introduction to transport phenomena. It begins by explaining the underlying principles and mechanisms that govern mass transport, and continues by tackling practical problems spanning all subdisciplines of environmental science and chemical engineering. Assuming some knowledge of ordinary differential equations and a familiarity with basic fluid mechanics applications, this classroom-tested text addresses mass conservation and macroscopic mass balances, placing a special emphasis on applications to environmental processes and presenting a mathematical framework for formulating and solving transport phenomena problems.

Transport Phenomena and Materials Processing

Transport Phenomena and Materials Processing PDF Author: Sindo Kou
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 712

Get Book Here

Book Description
An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication Covers the latest advances in the field, including recent results of computer simulation and flow visualization Presents special boundary conditions for transport phenomena in materials processing Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving Offers a unique derivation of governing equations that leads to both overall and differential balance equations Provides a list of publicly available computer programs and publications relevant to transport phenomena in materials processing

Transport Phenomena for Chemical Reactor Design

Transport Phenomena for Chemical Reactor Design PDF Author: Laurence A. Belfiore
Publisher: John Wiley & Sons
ISBN: 0471202754
Category : Technology & Engineering
Languages : en
Pages : 912

Get Book Here

Book Description
Laurence Belfiore’s unique treatment meshes two mainstream subject areas in chemical engineering: transport phenomena and chemical reactor design. Expressly intended as an extension of Bird, Stewart, and Lightfoot’s classic Transport Phenomena, and Froment and Bischoff’s Chemical Reactor Analysis and Design, Second Edition, Belfiore’s unprecedented text explores the synthesis of these two disciplines in a manner the upper undergraduate or graduate reader can readily grasp. Transport Phenomena for Chemical Reactor Design approaches the design of chemical reactors from microscopic heat and mass transfer principles. It includes simultaneous consideration of kinetics and heat transfer, both critical to the performance of real chemical reactors. Complementary topics in transport phenomena and thermodynamics that provide support for chemical reactor analysis are covered, including: Fluid dynamics in the creeping and potential flow regimes around solid spheres and gas bubbles The corresponding mass transfer problems that employ velocity profiles, derived in the book’s fluid dynamics chapter, to calculate interphase heat and mass transfer coefficients Heat capacities of ideal gases via statistical thermodynamics to calculate Prandtl numbers Thermodynamic stability criteria for homogeneous mixtures that reveal that binary molecular diffusion coefficients must be positive In addition to its comprehensive treatment, the text also contains 484 problems and ninety-six detailed solutions to assist in the exploration of the subject. Graduate and advanced undergraduate chemical engineering students, professors, and researchers will appreciate the vision, innovation, and practical application of Laurence Belfiore’s Transport Phenomena for Chemical Reactor Design.