Author: Marlowe D. Cassetti
Publisher:
ISBN:
Category : Transonic wind tunnels
Languages : en
Pages : 104
Book Description
An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5° with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0° to 14°, with Reynolds numbers based on mean aerodynamic chord varying from 7 x 106 to 8 x 106. Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced to transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.
Transonic Aerodynamic Loading Characteristics of a Wing-body-tail Combination Having 52.5° Sweptback Wing of Aspect Ratio 3 with Conical Wing Camber and Body Indentation for a Design Mach Number [square Root Of] 2
Author: Marlowe D. Cassetti
Publisher:
ISBN:
Category : Transonic wind tunnels
Languages : en
Pages : 104
Book Description
An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5° with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0° to 14°, with Reynolds numbers based on mean aerodynamic chord varying from 7 x 106 to 8 x 106. Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced to transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.
Publisher:
ISBN:
Category : Transonic wind tunnels
Languages : en
Pages : 104
Book Description
An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5° with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0° to 14°, with Reynolds numbers based on mean aerodynamic chord varying from 7 x 106 to 8 x 106. Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced to transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.
Aerodynamic Characteristics at Supersonic Speeds of a Series of Wing-body Combinations Having Cambered Wings with an Aspect Ratio of 3.5 and a Taper Ratio of 0.2
Author: Ross B. Robinson
Publisher:
ISBN:
Category : Aerodynamics, Supersonic
Languages : en
Pages : 32
Book Description
Publisher:
ISBN:
Category : Aerodynamics, Supersonic
Languages : en
Pages : 32
Book Description
Aerodynamic Characteristics at Supersonic Speeds of a Series of Wing-body Combinations Having Cambered Wings with an Aspect Ratio of 3.5 and a Taper Ratio of 0.2
Author: Lowell E. Hasel
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 36
Book Description
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 36
Book Description
An Investigation at Transonic Speeds of the Effects of Thickness Ratio and of Thickened Root Sections on the Aerodynamic Characteristics of Wings with 47© Sweepback, Aspect Ratio 3.5, and Taper Ratio 0.2 in the Slotted Test Section of the Langley 8-foot High-speed Tunnel
Author: Ralph P. Bielat
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 44
Book Description
Four wing-body combinations of the same plan form (47 degree sweep, 3.5 aspect ratio, and 0.2 taper ratio) were compared at transonic speeds in the Langley 8-foot high-speed tunnel. Three wings were 4, 6, and 9 percent thick; the fourth was 6 percent thick but, on the inner 0.4 span, tapered to 12-percent thickness at the roots.
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 44
Book Description
Four wing-body combinations of the same plan form (47 degree sweep, 3.5 aspect ratio, and 0.2 taper ratio) were compared at transonic speeds in the Langley 8-foot high-speed tunnel. Three wings were 4, 6, and 9 percent thick; the fourth was 6 percent thick but, on the inner 0.4 span, tapered to 12-percent thickness at the roots.
An Experimental Transonic Investigation of a 45© Sweptback Wing-body Combination with Several Types of Body Indentation with Theoretical Comparisons Included
Author: Melvin M. Carmel
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 60
Book Description
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 60
Book Description
Aerodynamic Characteristics at Mach Numbers of 1.41 and 2.01 of a Series of Cranked Wings Ranging in Aspect Ratio from 4.00 to 1.74 in Combination with a Body
Author: John R. Sevier
Publisher:
ISBN:
Category : Aerodynamics, Supersonic
Languages : en
Pages : 44
Book Description
Publisher:
ISBN:
Category : Aerodynamics, Supersonic
Languages : en
Pages : 44
Book Description
Effects of Two Leading-edge Modifications on the Aerodynamic Characteristics of a Thin Low-aspect-ratio Delta Wing at Transonic Speeds
Author: John P. Mugler
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 44
Book Description
An investigation was conducted in the Langley 8-foot transonic tunnel to determine the aerodynamic characteristics of a thin 60 degree delta wing with two leading-edge modifications (conical leading-edge camber and leading-edge droop) in combination with bodies with and without body indentation in accordance with the transonic-area-rule concept. The tests covered a Mach number range from 060 to 1.15 and an angle-of-attack range from -4 to 20 degrees at a Reynolds number of about 3,000,000 based on the wing mean aerodynamic chord. The wing had an aspect ratio of 2.31, a taper ratio of 0, and, without modifications, had NACA 65A003 airfoil sections parallel to the model plane of symmetry.
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 44
Book Description
An investigation was conducted in the Langley 8-foot transonic tunnel to determine the aerodynamic characteristics of a thin 60 degree delta wing with two leading-edge modifications (conical leading-edge camber and leading-edge droop) in combination with bodies with and without body indentation in accordance with the transonic-area-rule concept. The tests covered a Mach number range from 060 to 1.15 and an angle-of-attack range from -4 to 20 degrees at a Reynolds number of about 3,000,000 based on the wing mean aerodynamic chord. The wing had an aspect ratio of 2.31, a taper ratio of 0, and, without modifications, had NACA 65A003 airfoil sections parallel to the model plane of symmetry.
Transonic Longitudinal Aerodynamic Characteristics of a Fighter-type Airplane Model with a Low-aspect-ratio Unswept Wing and Tee-tail
Author: Gerald Hieser
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 64
Book Description
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 64
Book Description
Investigation at Transonic Speeds of the Loading Over a 45 Degree Sweptback Wing Having an Aspect Ratio of 3, a Taper Ratio of 0.2, and NACA 65A004 Airfoil Sections
Author: Jack F. Runckel
Publisher:
ISBN:
Category : Aerodynamic load
Languages : en
Pages : 104
Book Description
An investigation at transonic speeds of the loading over a 45 degree sweptback wing having an aspect ratio of 3, a taper ratio of 0.2, and NACA 65A004 airfoil sections has been conducted in the Langley16-foot transonic tunnel. Pressure measurements on the wing-body combination were obtained at angles of attack from 0 to 26 degrees at Mach numbers from 0.80 to 0.98 and from 0 to about 12 degrees at Mach numbers from 1.00 to 1.05. Reynolds number, based on the wing mean aerodynamic chord, varied from 7,000,000 to 8,500,000 over the test Mach number range.
Publisher:
ISBN:
Category : Aerodynamic load
Languages : en
Pages : 104
Book Description
An investigation at transonic speeds of the loading over a 45 degree sweptback wing having an aspect ratio of 3, a taper ratio of 0.2, and NACA 65A004 airfoil sections has been conducted in the Langley16-foot transonic tunnel. Pressure measurements on the wing-body combination were obtained at angles of attack from 0 to 26 degrees at Mach numbers from 0.80 to 0.98 and from 0 to about 12 degrees at Mach numbers from 1.00 to 1.05. Reynolds number, based on the wing mean aerodynamic chord, varied from 7,000,000 to 8,500,000 over the test Mach number range.
Transonic Investigation of Aerodynamic Characteristics of a Swept-wing Fighter-airplane Model with Leading-edge Droop in Combination with Outboard Chord-extensions and Notches
Author: Charles F. Whitcomb
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 36
Book Description
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 36
Book Description