Author: Joseph A Thas
Publisher: World Scientific
ISBN: 9814477281
Category : Mathematics
Languages : en
Pages : 377
Book Description
Translation generalized quadrangles play a key role in the theory of generalized quadrangles, comparable to the role of translation planes in the theory of projective and affine planes. The notion of translation generalized quadrangle is a local analogue of the more global “Moufang Condition”, a topic of great interest, also due to the classification of all Moufang polygons. Attention is thus paid to recent results in that direction, but also many of the most important results in the general theory of generalized quadrangles that appeared since 1984 are treated.Translation Generalized Quadrangles is essentially self-contained, as the reader is only expected to be familiar with some basic facts on finite generalized quadrangles. Proofs that are either too long or too technical are left out, or just sketched. The three standard works on generalized quadrangles are (co-)authored by the writers of this book: “Finite Generalized Quadrangles” (1984) by S E Payne and J A Thas, “Generalized Polygons” (1998) by H Van Maldeghem, and “Symmetry in Finite Generalized Quadrangles” (2004) by K Thas.
Translation Generalized Quadrangles
Author: Joseph A Thas
Publisher: World Scientific
ISBN: 9814477281
Category : Mathematics
Languages : en
Pages : 377
Book Description
Translation generalized quadrangles play a key role in the theory of generalized quadrangles, comparable to the role of translation planes in the theory of projective and affine planes. The notion of translation generalized quadrangle is a local analogue of the more global “Moufang Condition”, a topic of great interest, also due to the classification of all Moufang polygons. Attention is thus paid to recent results in that direction, but also many of the most important results in the general theory of generalized quadrangles that appeared since 1984 are treated.Translation Generalized Quadrangles is essentially self-contained, as the reader is only expected to be familiar with some basic facts on finite generalized quadrangles. Proofs that are either too long or too technical are left out, or just sketched. The three standard works on generalized quadrangles are (co-)authored by the writers of this book: “Finite Generalized Quadrangles” (1984) by S E Payne and J A Thas, “Generalized Polygons” (1998) by H Van Maldeghem, and “Symmetry in Finite Generalized Quadrangles” (2004) by K Thas.
Publisher: World Scientific
ISBN: 9814477281
Category : Mathematics
Languages : en
Pages : 377
Book Description
Translation generalized quadrangles play a key role in the theory of generalized quadrangles, comparable to the role of translation planes in the theory of projective and affine planes. The notion of translation generalized quadrangle is a local analogue of the more global “Moufang Condition”, a topic of great interest, also due to the classification of all Moufang polygons. Attention is thus paid to recent results in that direction, but also many of the most important results in the general theory of generalized quadrangles that appeared since 1984 are treated.Translation Generalized Quadrangles is essentially self-contained, as the reader is only expected to be familiar with some basic facts on finite generalized quadrangles. Proofs that are either too long or too technical are left out, or just sketched. The three standard works on generalized quadrangles are (co-)authored by the writers of this book: “Finite Generalized Quadrangles” (1984) by S E Payne and J A Thas, “Generalized Polygons” (1998) by H Van Maldeghem, and “Symmetry in Finite Generalized Quadrangles” (2004) by K Thas.
Translation Generalized Quadrangles
Author: Joseph Adolf Thas
Publisher: World Scientific
ISBN: 9812569510
Category : Mathematics
Languages : en
Pages : 377
Book Description
Translation generalized quadrangles play a key role in the theory of generalized quadrangles, comparable to the role of translation planes in the theory of projective and affine planes. The notion of translation generalized quadrangle is a local analogue of the more global ?Moufang Condition?, a topic of great interest, also due to the classification of all Moufang polygons. Attention is thus paid to recent results in that direction, but also many of the most important results in the general theory of generalized quadrangles that appeared since 1984 are treated.Translation Generalized Quadrangles is essentially self-contained, as the reader is only expected to be familiar with some basic facts on finite generalized quadrangles. Proofs that are either too long or too technical are left out, or just sketched. The three standard works on generalized quadrangles are (co-)authored by the writers of this book: ?Finite Generalized Quadrangles? (1984) by S E Payne and J A Thas, ?Generalized Polygons? (1998) by H Van Maldeghem, and ?Symmetry in Finite Generalized Quadrangles? (2004) by K Thas.
Publisher: World Scientific
ISBN: 9812569510
Category : Mathematics
Languages : en
Pages : 377
Book Description
Translation generalized quadrangles play a key role in the theory of generalized quadrangles, comparable to the role of translation planes in the theory of projective and affine planes. The notion of translation generalized quadrangle is a local analogue of the more global ?Moufang Condition?, a topic of great interest, also due to the classification of all Moufang polygons. Attention is thus paid to recent results in that direction, but also many of the most important results in the general theory of generalized quadrangles that appeared since 1984 are treated.Translation Generalized Quadrangles is essentially self-contained, as the reader is only expected to be familiar with some basic facts on finite generalized quadrangles. Proofs that are either too long or too technical are left out, or just sketched. The three standard works on generalized quadrangles are (co-)authored by the writers of this book: ?Finite Generalized Quadrangles? (1984) by S E Payne and J A Thas, ?Generalized Polygons? (1998) by H Van Maldeghem, and ?Symmetry in Finite Generalized Quadrangles? (2004) by K Thas.
Finite Generalized Quadrangles
Author: Stanley E. Payne
Publisher: European Mathematical Society
ISBN: 9783037190661
Category : Mathematics
Languages : en
Pages : 304
Book Description
Generalized quadrangles (GQ) were formally introduced by J. Tits in 1959 to describe geometric properties of simple groups of Lie type of rank 2. The first edition of Finite Generalized Quadrangles (FGQ) quickly became the standard reference for finite GQ. The second edition is essentially a reprint of the first edition. It is a careful rendering into LaTeX of the original, along with an appendix that brings to the attention of the reader those major new results pertaining to GQ, especially in those areas where the authors of this work have made a contribution. The first edition has been out of print for many years. The new edition makes available again this classical reference in the rapidly increasing field of finite geometries.
Publisher: European Mathematical Society
ISBN: 9783037190661
Category : Mathematics
Languages : en
Pages : 304
Book Description
Generalized quadrangles (GQ) were formally introduced by J. Tits in 1959 to describe geometric properties of simple groups of Lie type of rank 2. The first edition of Finite Generalized Quadrangles (FGQ) quickly became the standard reference for finite GQ. The second edition is essentially a reprint of the first edition. It is a careful rendering into LaTeX of the original, along with an appendix that brings to the attention of the reader those major new results pertaining to GQ, especially in those areas where the authors of this work have made a contribution. The first edition has been out of print for many years. The new edition makes available again this classical reference in the rapidly increasing field of finite geometries.
Symmetry in Finite Generalized Quadrangles
Author: Koen Thas
Publisher: Springer Science & Business Media
ISBN: 9783764361587
Category : Mathematics
Languages : en
Pages : 246
Book Description
This monograph classifies finite generalized quadrangles by symmetry, generalizing the celebrated Lenz-Barlotti classification for projective planes. The book introduces combinatorial, geometrical and group-theoretical concepts that arise in the classification and in the general theory of finite generalized quadrangles, including automorphism groups, elation and translation generalized quadrangles, generalized ovals and generalized ovoids, span-symmetric generalized quadrangles, flock geometry and property (G), regularity and nets, split BN-pairs of rank 1, and the Moufang property.
Publisher: Springer Science & Business Media
ISBN: 9783764361587
Category : Mathematics
Languages : en
Pages : 246
Book Description
This monograph classifies finite generalized quadrangles by symmetry, generalizing the celebrated Lenz-Barlotti classification for projective planes. The book introduces combinatorial, geometrical and group-theoretical concepts that arise in the classification and in the general theory of finite generalized quadrangles, including automorphism groups, elation and translation generalized quadrangles, generalized ovals and generalized ovoids, span-symmetric generalized quadrangles, flock geometry and property (G), regularity and nets, split BN-pairs of rank 1, and the Moufang property.
A Course on Elation Quadrangles
Author: Koen Thas
Publisher: European Mathematical Society
ISBN: 9783037191101
Category : Mathematics
Languages : en
Pages : 136
Book Description
The notion of elation generalized quadrangle is a natural generalization to the theory of generalized quadrangles of the important notion of translation planes in the theory of projective planes. Almost any known class of finite generalized quadrangles can be constructed from a suitable class of elation quadrangles. In this book the author considers several aspects of the theory of elation generalized quadrangles. Special attention is given to local Moufang conditions on the foundational level, exploring, for instance, Knarr's question from the 1990s concerning the very notion of elation quadrangles. All the known results on Kantor's prime power conjecture for finite elation quadrangles are gathered, some of them published here for the first time. The structural theory of elation quadrangles and their groups is heavily emphasized. Other related topics, such as $p$-modular cohomology, Heisenberg groups, and existence problems for certain translation nets, are briefly touched. This book starts from scratch and is essentially self-contained. Many alternative proofs are given for known theorems. This course contains dozens of exercises at various levels, from very easy to rather difficult, and will stimulate undergraduate and graduate students to enter the fascinating and rich world of elation quadrangles. More accomplished mathematicians will find the final chapters especially challenging.
Publisher: European Mathematical Society
ISBN: 9783037191101
Category : Mathematics
Languages : en
Pages : 136
Book Description
The notion of elation generalized quadrangle is a natural generalization to the theory of generalized quadrangles of the important notion of translation planes in the theory of projective planes. Almost any known class of finite generalized quadrangles can be constructed from a suitable class of elation quadrangles. In this book the author considers several aspects of the theory of elation generalized quadrangles. Special attention is given to local Moufang conditions on the foundational level, exploring, for instance, Knarr's question from the 1990s concerning the very notion of elation quadrangles. All the known results on Kantor's prime power conjecture for finite elation quadrangles are gathered, some of them published here for the first time. The structural theory of elation quadrangles and their groups is heavily emphasized. Other related topics, such as $p$-modular cohomology, Heisenberg groups, and existence problems for certain translation nets, are briefly touched. This book starts from scratch and is essentially self-contained. Many alternative proofs are given for known theorems. This course contains dozens of exercises at various levels, from very easy to rather difficult, and will stimulate undergraduate and graduate students to enter the fascinating and rich world of elation quadrangles. More accomplished mathematicians will find the final chapters especially challenging.
Finite Geometries
Author: Johnson
Publisher: CRC Press
ISBN: 9780824710521
Category : Mathematics
Languages : en
Pages : 476
Book Description
Publisher: CRC Press
ISBN: 9780824710521
Category : Mathematics
Languages : en
Pages : 476
Book Description
Generalized Polygons
Author: Hendrik Van Maldeghem
Publisher: Springer Science & Business Media
ISBN: 3034802714
Category : Mathematics
Languages : en
Pages : 511
Book Description
Generalized Polygons is the first book to cover, in a coherent manner, the theory of polygons from scratch. In particular, it fills elementary gaps in the literature and gives an up-to-date account of current research in this area, including most proofs, which are often unified and streamlined in comparison to the versions generally known. Generalized Polygons will be welcomed both by the student seeking an introduction to the subject as well as the researcher who will value the work as a reference. In particular, it will be of great value for specialists working in the field of generalized polygons (which are, incidentally, the rank 2 Tits-buildings) or in fields directly related to Tits-buildings, incidence geometry and finite geometry. The approach taken in the book is of geometric nature, but algebraic results are included and proven (in a geometric way!). A noteworthy feature is that the book unifies and generalizes notions, definitions and results that exist for quadrangles, hexagons, octagons - in the literature very often considered separately - to polygons. Many alternative viewpoints given in the book heighten the sense of beauty of the subject and help to provide further insight into the matter.
Publisher: Springer Science & Business Media
ISBN: 3034802714
Category : Mathematics
Languages : en
Pages : 511
Book Description
Generalized Polygons is the first book to cover, in a coherent manner, the theory of polygons from scratch. In particular, it fills elementary gaps in the literature and gives an up-to-date account of current research in this area, including most proofs, which are often unified and streamlined in comparison to the versions generally known. Generalized Polygons will be welcomed both by the student seeking an introduction to the subject as well as the researcher who will value the work as a reference. In particular, it will be of great value for specialists working in the field of generalized polygons (which are, incidentally, the rank 2 Tits-buildings) or in fields directly related to Tits-buildings, incidence geometry and finite geometry. The approach taken in the book is of geometric nature, but algebraic results are included and proven (in a geometric way!). A noteworthy feature is that the book unifies and generalizes notions, definitions and results that exist for quadrangles, hexagons, octagons - in the literature very often considered separately - to polygons. Many alternative viewpoints given in the book heighten the sense of beauty of the subject and help to provide further insight into the matter.
q-Clan Geometries in Characteristic 2
Author: Ilaria Cardinali
Publisher: Springer Science & Business Media
ISBN: 3764385081
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book offers a complete proof of the Fundamental Theorem of q-Clan Geometry, followed by a detailed study of the known examples. It completely works out the collineation groups of the associated generalized quadrangles and the stabilizers of their associated ovals.
Publisher: Springer Science & Business Media
ISBN: 3764385081
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book offers a complete proof of the Fundamental Theorem of q-Clan Geometry, followed by a detailed study of the known examples. It completely works out the collineation groups of the associated generalized quadrangles and the stabilizers of their associated ovals.
Points and Lines
Author: Ernest E. Shult
Publisher: Springer Science & Business Media
ISBN: 3642156274
Category : Mathematics
Languages : en
Pages : 682
Book Description
The classical geometries of points and lines include not only the projective and polar spaces, but similar truncations of geometries naturally arising from the groups of Lie type. Virtually all of these geometries (or homomorphic images of them) are characterized in this book by simple local axioms on points and lines. Simple point-line characterizations of Lie incidence geometries allow one to recognize Lie incidence geometries and their automorphism groups. These tools could be useful in shortening the enormously lengthy classification of finite simple groups. Similarly, recognizing ruled manifolds by axioms on light trajectories offers a way for a physicist to recognize the action of a Lie group in a context where it is not clear what Hamiltonians or Casimir operators are involved. The presentation is self-contained in the sense that proofs proceed step-by-step from elementary first principals without further appeal to outside results. Several chapters have new heretofore unpublished research results. On the other hand, certain groups of chapters would make good graduate courses. All but one chapter provide exercises for either use in such a course, or to elicit new research directions.
Publisher: Springer Science & Business Media
ISBN: 3642156274
Category : Mathematics
Languages : en
Pages : 682
Book Description
The classical geometries of points and lines include not only the projective and polar spaces, but similar truncations of geometries naturally arising from the groups of Lie type. Virtually all of these geometries (or homomorphic images of them) are characterized in this book by simple local axioms on points and lines. Simple point-line characterizations of Lie incidence geometries allow one to recognize Lie incidence geometries and their automorphism groups. These tools could be useful in shortening the enormously lengthy classification of finite simple groups. Similarly, recognizing ruled manifolds by axioms on light trajectories offers a way for a physicist to recognize the action of a Lie group in a context where it is not clear what Hamiltonians or Casimir operators are involved. The presentation is self-contained in the sense that proofs proceed step-by-step from elementary first principals without further appeal to outside results. Several chapters have new heretofore unpublished research results. On the other hand, certain groups of chapters would make good graduate courses. All but one chapter provide exercises for either use in such a course, or to elicit new research directions.
General Galois Geometries
Author: James Hirschfeld
Publisher: Springer
ISBN: 1447167902
Category : Mathematics
Languages : en
Pages : 422
Book Description
This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.
Publisher: Springer
ISBN: 1447167902
Category : Mathematics
Languages : en
Pages : 422
Book Description
This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.