Traffic Signal Control at Connected Vehicle Equipped Intersections

Traffic Signal Control at Connected Vehicle Equipped Intersections PDF Author: Zhitong Huang
Publisher:
ISBN:
Category :
Languages : en
Pages : 173

Get Book Here

Book Description
The dissertation presents a connected vehicle based traffic signal control model (CVTSCM) for signalized arterials. The model addresses different levels of traffic congestion starting with the initial deployment of connected vehicle technologies focusing on two modules created in CVTSCM. For near/under-saturated intersections, an arterial-level traffic progression optimization model (ALTPOM) is being proposed. ALTPOM improves traffic progression by optimizing offsets for an entire signalized arterial simultaneously. To optimize these offsets, splits of coordinated intersections are first adjusted to balance predicted upcoming demands of all approaches at individual intersections. An open source traffic simulator was selected to implement and evaluate the performance of ALTPOM. The case studies’ field signal timing plans were coordinated and optimized using TRANSYT-7F as the benchmark. ALTPOM was implemented with connected vehicles penetration rates at 25% and 50%, ALTPOM significantly outperforms TRANSYT-7F with at least 26.0% reduction of control delay (sec/vehicle) and a 4.4% increase of throughput for both directions of major and minor streets. This technique differs from traditional traffic coordination which prioritizes major street traffic, and thereby generally results in degrading performance on minor streets. ALTPOM also provides smooth traffic progression for the coordinated direction with little impact on the opposite direction. The performance of ALTPOM improves as the penetration rate of connected vehicles increases. For saturated/oversaturated conditions, two queue length management based Active Traffic Management (ATM) strategies are proposed, analytically investigated, and experimentally validated. The first strategy distributes as much green time as possible for approaches with higher saturation discharge rate in order to reduce delay. For the second approach, green times are allocated to balance queue lengths of major and minor streets preventing queue spillback or gridlock. Both strategies were formulated initially using uniform arrival and departure, and then validated using field vehicle trajectory data. After validation of the modules, the effectiveness of CVTSCM is proven. Then, conclusions and recommendations for future researches are presented at the end.

Enhanced Traffic Signal Operation Using Connected Vehicle Data

Enhanced Traffic Signal Operation Using Connected Vehicle Data PDF Author: Ehsan Bagheri
Publisher:
ISBN:
Category : Intelligent transportation systems
Languages : en
Pages : 168

Get Book Here

Book Description
As traffic on urban road network increases, congestion and delays are becoming more severe. At grade intersections form capacity bottlenecks in urban road networks because at these locations, capacity must be shared by competing traffic movements. Traffic signals are the most common method by which the right of way is dynamically allocated to conflicting movements. A range of traffic signal control strategies exist including fixed time control, actuated control, and adaptive traffic signal control (ATSC). ATSC relies on traffic sensors to estimate inputs such as traffic demands, queue lengths, etc. and then dynamically adjusts signal timings with the objective to minimize delays and stops at the intersection. Despite, the advantages of these ATSC systems, one of the barriers limiting greater use of these systems is the large number of traffic sensors required to provide the essential information for their signal timing optimization methodologies. A recently introduced technology called connected vehicles will make vehicles capable of providing detailed information such as their position, speed, acceleration rate, etc. in real-time using a wireless technology. The deployment of connected vehicle technology would provide the opportunity to introduce new traffic control strategies or to enhance the existing one. Some work has been done to-date to develop new ATSC systems on the basis of the data provided by connected vehicles which are mainly designed on the assumption that all vehicles on the network are equipped with the connected vehicle technology. The goals of such systems are to: 1) provide better performance at signalized intersections using enhanced algorithms based on richer data provided by the connected vehicles; and 2) reduce (or eliminate) the need for fixed point detectors/sensors in order to reduce deployment and maintenance costs. However, no work has been done to investigate how connected vehicle data can improve the performance of ATSC systems that are currently deployed and that operate using data from traditional detectors. Moreover, achieving a 100% market penetration of connected vehicles may take more than 30 years (even if the technology is mandated on new vehicles). Therefore, it is necessary to provide a solution that is capable of improving the performance of signalized intersections during this transition period using connected vehicle data even at low market penetration rates. This research examines the use of connected vehicle data as the only data source at different market penetration rates aiming to provide the required inputs for conventional adaptive signal control systems. The thesis proposes various methodologies to: 1) estimate queues at signalized intersections; 2) dynamically estimate the saturation flow rate required for optimizing the timings of traffic signals at intersections; and 3) estimate the free flow speed on arterials for the purpose of optimizing offsets between traffic signals. This thesis has resulted in the following findings: 1. Connected vehicle data can be used to estimate the queue length at signalized intersections especially for the purpose of estimating the saturation flow rate. The vehicles' length information provided by connected vehicles can be used to enhance the queue estimation when the traffic composition changes on a network. 2. The proposed methodology for estimating the saturation flow rate is able to estimate temporally varying saturation flow rates in response to changing network conditions, including lane blockages and queue spillback that limit discharge rates, and do so with an acceptable range of errors even at low level of market penetration of connected vehicles. The evaluation of the method for a range of traffic Level of Service (LOS) shows that the maximum observed mean absolute relative error (6.2%) occurs at LOS F and when only 10% of vehicles in the traffic stream are connected vehicles. 3. The proposed method for estimating the Free Flow Speed (FFS) on arterial roads can provide estimations close to the known ground truth and can respond to changes in the FFS. The results also show that the maximum absolute error of approximately 4.7 km/h in the estimated FFS was observed at 10% market penetration rate of connected vehicles. 4. The results of an evaluation of an adaptive signal control system based on connected vehicle data in a microsimulation environment show that the adaptive signal control system is able to adjust timings of signals at intersections in response to changes in the saturation flow rate and free flow speed estimated from connected vehicle data using the proposed methodologies. The comparison of the adaptive signal control system against a fixed time control at 20% and 100% CV market penetration rates shows improvements in average vehicular delay and average number of stops at both market penetration rates and though improvements are larger for 100% CV LMP, approximately 70% of these improvements are achieved at 20% CV LMP.

Selection of Traffic Signal Control and Timing at Individual Intersections

Selection of Traffic Signal Control and Timing at Individual Intersections PDF Author:
Publisher:
ISBN:
Category : Electronic traffic controls
Languages : en
Pages : 232

Get Book Here

Book Description


Traffic Signal Control in a Connected and Autonomous Vehicle Environment Considering Pedestrians

Traffic Signal Control in a Connected and Autonomous Vehicle Environment Considering Pedestrians PDF Author: Xiao Liang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Traffic signals help to maintain order in urban traffic networks and reduce vehicle conflicts by dynamically assigning right-of-way to different vehicle movements. However, by temporarily stopping vehicle movements at regular intervals, traffic signals are a major source of urban congestion and cause increased vehicle delay, fuel consumption, and environmental pollution. Connected and Autonomous Vehicle technology may be utilized to optimize traffic operations at signalized intersections, since connected vehicles have the ability to communicate with the surrounding infrastructure and autonomous vehicles can follow the instructions from the signal or a central control system. Connected vehicle information received by a signal controller can be used to help adjust signal timings to tailor to the specific dynamic vehicle demand. Information about the signal timing plan can then be communicated back to the vehicles so that they can adjust their speeds/trajectories to further improve traffic operations. Based on a thorough literature review of existing studies in the area of signal control utilizing information from connected and autonomous vehicles, three research gaps are found: 1) application are limited to unrealistic intersection configurations; 2) methods are limited to a single mode; or, 3) methods only optimize the average value of measure of effectiveness while ignoring the distribution among vehicles. As a part of this dissertation, several methods will be proposed to increase computational efficiency of an existing CAV-based joint signal timing and vehicle trajectory optimization algorithm so that it can be applied to more realistic intersection settings without adding computational burden. Doing so requires the creation of new methods to accommodate features like multiple lanes on each approach, more than two approaches and turning maneuvers. Methods to incorporate human-driven cooperative vehicles and pedestrians are also proposed and tested. A more equitable traffic signal control method is also designed.

A Semi-actuated Or Fully Actuated Two Through Eight Phase Local Intersection Program for the 332 and 336 Cabinets of the California/New York Type 170 Traffic Signal Controller System

A Semi-actuated Or Fully Actuated Two Through Eight Phase Local Intersection Program for the 332 and 336 Cabinets of the California/New York Type 170 Traffic Signal Controller System PDF Author: United States. Federal Highway Administration. Implementation Division
Publisher:
ISBN:
Category : Electronic traffic controls
Languages : en
Pages : 134

Get Book Here

Book Description


Traffic Control Devices Handbook

Traffic Control Devices Handbook PDF Author: United States. National Advisory Committee on Uniform Traffic Control Devices
Publisher:
ISBN:
Category : Street signs
Languages : en
Pages : 212

Get Book Here

Book Description
The handbook, in its treatment of signs, pavement markings and signals, presents typical values or ranges of values used for implementing traffic control measures, as well as providing examples of contract plan sheets, specifications and work orders. With respect to signs, consideration is given to materials, equipment, installation, maintenance, vandalism, etc. The section on pavement markings includes materials, methods of application and application operations. Traffic signal design, operation, equipment, and maintenance are discussed, as are various types of signal systems.

Automobile Traffic Signal Control Systems

Automobile Traffic Signal Control Systems PDF Author: Lionel M. Rodgers
Publisher:
ISBN:
Category : Electronic traffic controls
Languages : en
Pages : 224

Get Book Here

Book Description
"In this book, Mr. Rogers describes the basic criteria for the selection of equipment, and explains in detail how to design and apply modern traffic-control systems, based on his long experience as a traffic engineer and an electronics scientist. He also discusses equipment maintenance and the various means that can be used for electrically interconnecting intersection controllers, vehicle detectors, and central control devices" -- Foreword.

Robust-Intelligent Traffic Signal Control Within a Vehicle-to-Infrastructure and Vehicle-to-Vehicle Communication Environment

Robust-Intelligent Traffic Signal Control Within a Vehicle-to-Infrastructure and Vehicle-to-Vehicle Communication Environment PDF Author: Qing He
Publisher:
ISBN:
Category :
Languages : en
Pages : 506

Get Book Here

Book Description
Modern traffic signal control systems have not changed significantly in the past 40-50 years. The most widely applied traffic signal control systems are still time-of-day, coordinated-actuated system, since many existing advanced adaptive signal control systems are too complicated and fathomless for most of people. Recent advances in communications standards and technologies provide the basis for significant improvements in traffic signal control capabilities. In the United States, the IntelliDriveSM program (originally called Vehicle Infrastructure Integration - VII) has identified 5.9GHz Digital Short Range Communications (DSRC) as the primary communications mode for vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) safety based applications, denoted as v2x. The ability for vehicles and the infrastructure to communication information is a significant advance over the current system capability of point presence and passage detection that is used in traffic control systems. Given enriched data from IntelliDriveSM, the problem of traffic control can be solved in an innovative data-driven and mathematical way to produce robust and optimal outputs. In this doctoral research, three different problems within a v2x environment- "enhanced pseudo-lane-level vehicle positioning", "robust coordinated-actuated multiple priority control", and "multimodal platoon-based arterial traffic signal control", are addressed with statistical techniques and mathematical programming. First, a pseudo-lane-level GPS positioning system is proposed based on an IntelliDriveSM v2x environment. GPS errors can be categorized into common-mode errors and noncommon-mode errors, where common-mode errors can be mitigated by differential GPS (DGPS) but noncommon-mode cannot. Common-mode GPS errors are cancelled using differential corrections broadcast from the road-side equipment (RSE). With v2i communication, a high fidelity roadway layout map (called MAP in the SAE J2735 standard) and satellite pseudo-range corrections are broadcast by the RSE. To enhance and correct lane level positioning of a vehicle, a statistical process control approach is used to detect significant vehicle driving events such as turning at an intersection or lane-changing. Whenever a turn event is detected, a mathematical program is solved to estimate and update the GPS noncommon-mode errors. Overall the GPS errors are reduced by corrections to both common-mode and noncommon-mode errors. Second, an analytical mathematical model, a mixed-integer linear program (MILP), is developed to provide robust real-time multiple priority control, assuming penetration of IntelliDriveSM is limited to emergency vehicles and transit vehicles. This is believed to be the first mathematical formulation which accommodates advanced features of modern traffic controllers, such as green extension and vehicle actuations, to provide flexibility in implementation of optimal signal plans. Signal coordination between adjacent signals is addressed by virtual coordination requests which behave significantly different than the current coordination control in a coordinated-actuated controller. The proposed new coordination method can handle both priority and coordination together to reduce and balance delays for buses and automobiles with real-time optimized solutions. The robust multiple priority control problem was simplified as a polynomial cut problem with some reasonable assumptions and applied on a real-world intersection at Southern Ave. & 67 Ave. in Phoenix, AZ on February 22, 2010 and March 10, 2010. The roadside equipment (RSE) was installed in the traffic signal control cabinet and connected with a live traffic signal controller via Ethernet. With the support of Maricopa County's Regional Emergency Action Coordinating (REACT) team, three REACT vehicles were equipped with onboard equipments (OBE). Different priority scenarios were tested including concurrent requests, conflicting requests, and mixed requests. The experiments showed that the traffic controller was able to perform desirably under each scenario. Finally, a unified platoon-based mathematical formulation called PAMSCOD is presented to perform online arterial (network) traffic signal control while considering multiple travel modes in the IntelliDriveSM environment with high market penetration, including passenger vehicles. First, a hierarchical platoon recognition algorithm is proposed to identify platoons in real-time. This algorithm can output the number of platoons approaching each intersection. Second, a mixed-integer linear program (MILP) is solved to determine the future optimal signal plans based on the real-time platoon data (and the platoon request for service) and current traffic controller status. Deviating from the traditional common network cycle length, PAMSCOD aims to provide multi-modal dynamical progression (MDP) on the arterial based on the real-time platoon information. The integer feasible solution region is enhanced in order to reduce the solution times by assuming a first-come, first-serve discipline for the platoon requests on the same approach. Microscopic online simulation in VISSIM shows that PAMSCOD can easily handle two traffic modes including buses and automobiles jointly and significantly reduce delays for both modes, compared with SYNCHRO optimized plans.

Operation, Analysis, and Design of Signalized Intersections

Operation, Analysis, and Design of Signalized Intersections PDF Author: Michael Kyte
Publisher: Createspace Independent Publishing Platform
ISBN: 9781500204365
Category : Roads
Languages : en
Pages : 0

Get Book Here

Book Description
Before they begin their university studies, most students have experience with traffic signals, as drivers, pedestrians and bicycle riders. One of the tasks of the introductory course in transportation engineering is to portray the traffic signal control system in a way that connects with these experiences. The challenge is to reveal the system in a simple enough way to allow the student "in the door," but to include enough complexity so that this process of learning about signalized intersections is both challenging and rewarding. We have approached the process of developing this module with the following guidelines: * Focusing on the automobile user and pretimed signal operation allows the student to learn about fundamental principles of a signalized intersection, while laying the foundation for future courses that address other users (pedestrians, bicycle riders, public transit operators) and more advanced traffic control schemes such as actuated control, coordinated signal systems, and adaptive control. * Queuing models are presented as a way of learning about the fundamentals of traffic flow at a signalized intersection. A graphical approach is taken so that students can see how flow profile diagrams, cumulative vehicle diagrams, and queue accumulation polygons are powerful representations of the operation and performance of a signalized intersection. * Only those equations that students can apply with some degree of understanding are presented. For example, the uniform delay equation is developed and used as a means of representing intersection performance. However, the second and third terms of the Highway Capacity Manual delay equation are not included, as students will have no basis for understanding the foundation of these terms. * Learning objectives are clearly stated at the beginning of each section so that the student knows what is to come. At the end of each section, the learning objectives are reiterated along with a set of concepts that students should understand once they complete the work in the section. * Over 70 figures are included in the module. We believe that graphically illustrating basic concepts is an important way for students to learn, particularly for queuing model concepts and the development of the change and clearance timing intervals. * Over 50 computational problems and two field exercises are provided to give students the chance to test their understanding of the material. The sequence in which concepts are presented in this module, and the way in which more complex ideas build on the more fundamental ones, was based on our study of student learning in the introductory course. The development of each concept leads to an element in the culminating activity: the design and evaluation of a signal timing plan in section 9. For example, to complete step 1 of the design process, the student must learn about the sequencing and control of movements, presented in section 3 of this module. But to determine split times, step 6 of the design process, four concepts must be learned including flow (section 2), sequencing and control of movements (section 3), sufficiency of capacity (section 6), and cycle length and splits (section 8). Depending on the pace desired by the instructor, this material can be covered in 9 to 12 class periods.

Traffic Signal Operations Near Highway-rail Grade Crossings

Traffic Signal Operations Near Highway-rail Grade Crossings PDF Author: Hans W. Korve
Publisher: Transportation Research Board
ISBN: 9780309068246
Category : Technology & Engineering
Languages : en
Pages : 100

Get Book Here

Book Description
Presents a review of the current practices associated with the operation of traffic signals at intersections located near highway-rail grade crossings.