Towards Bayesian Model-Based Demography

Towards Bayesian Model-Based Demography PDF Author: Jakub Bijak
Publisher: Springer Nature
ISBN: 303083039X
Category : Social Science
Languages : en
Pages : 277

Get Book Here

Book Description
This open access book presents a ground-breaking approach to developing micro-foundations for demography and migration studies. It offers a unique and novel methodology for creating empirically grounded agent-based models of international migration – one of the most uncertain population processes and a top-priority policy area. The book discusses in detail the process of building a simulation model of migration, based on a population of intelligent, cognitive agents, their networks and institutions, all interacting with one another. The proposed model-based approach integrates behavioural and social theory with formal modelling, by embedding the interdisciplinary modelling process within a wider inductive framework based on the Bayesian statistical reasoning. Principles of uncertainty quantification are used to devise innovative computer-based simulations, and to learn about modelling the simulated individuals and the way they make decisions. The identified knowledge gaps are subsequently filled with information from dedicated laboratory experiments on cognitive aspects of human decision-making under uncertainty. In this way, the models are built iteratively, from the bottom up, filling an important epistemological gap in migration studies, and social sciences more broadly.

Towards Bayesian Model-Based Demography

Towards Bayesian Model-Based Demography PDF Author: Jakub Bijak
Publisher: Springer Nature
ISBN: 303083039X
Category : Social Science
Languages : en
Pages : 277

Get Book Here

Book Description
This open access book presents a ground-breaking approach to developing micro-foundations for demography and migration studies. It offers a unique and novel methodology for creating empirically grounded agent-based models of international migration – one of the most uncertain population processes and a top-priority policy area. The book discusses in detail the process of building a simulation model of migration, based on a population of intelligent, cognitive agents, their networks and institutions, all interacting with one another. The proposed model-based approach integrates behavioural and social theory with formal modelling, by embedding the interdisciplinary modelling process within a wider inductive framework based on the Bayesian statistical reasoning. Principles of uncertainty quantification are used to devise innovative computer-based simulations, and to learn about modelling the simulated individuals and the way they make decisions. The identified knowledge gaps are subsequently filled with information from dedicated laboratory experiments on cognitive aspects of human decision-making under uncertainty. In this way, the models are built iteratively, from the bottom up, filling an important epistemological gap in migration studies, and social sciences more broadly.

Towards Bayesian Model-based Demography

Towards Bayesian Model-based Demography PDF Author: Jakub Bijak
Publisher:
ISBN: 9788303083036
Category : Demography
Languages : en
Pages : 0

Get Book Here

Book Description
This open access book presents a ground-breaking approach to developing micro-foundations for demography and migration studies. It offers a unique and novel methodology for creating empirically grounded agent-based models of international migration - one of the most uncertain population processes and a top-priority policy area. The book discusses in detail the process of building a simulation model of migration, based on a population of intelligent, cognitive agents, their networks and institutions, all interacting with one another. The proposed model-based approach integrates behavioural and social theory with formal modelling, by embedding the interdisciplinary modelling process within a wider inductive framework based on the Bayesian statistical reasoning. Principles of uncertainty quantification are used to devise innovative computer-based simulations, and to learn about modelling the simulated individuals and the way they make decisions. The identified knowledge gaps are subsequently filled with information from dedicated laboratory experiments on cognitive aspects of human decision-making under uncertainty. In this way, the models are built iteratively, from the bottom up, filling an important epistemological gap in migration studies, and social sciences more broadly.

Bayesian Analysis for Population Ecology

Bayesian Analysis for Population Ecology PDF Author: Ruth King
Publisher: CRC Press
ISBN: 1439811881
Category : Mathematics
Languages : en
Pages : 457

Get Book Here

Book Description
Emphasizing model choice and model averaging, this book presents up-to-date Bayesian methods for analyzing complex ecological data. It provides a basic introduction to Bayesian methods that assumes no prior knowledge. The book includes detailed descriptions of methods that deal with covariate data and covers techniques at the forefront of research, such as model discrimination and model averaging. Leaders in the statistical ecology field, the authors apply the theory to a wide range of actual case studies and illustrate the methods using WinBUGS and R. The computer programs and full details of the data sets are available on the book's website.

Bayesian Demographic Estimation and Forecasting

Bayesian Demographic Estimation and Forecasting PDF Author: John Bryant
Publisher: CRC Press
ISBN: 0429841337
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
Bayesian Demographic Estimation and Forecasting presents three statistical frameworks for modern demographic estimation and forecasting. The frameworks draw on recent advances in statistical methodology to provide new tools for tackling challenges such as disaggregation, measurement error, missing data, and combining multiple data sources. The methods apply to single demographic series, or to entire demographic systems. The methods unify estimation and forecasting, and yield detailed measures of uncertainty. The book assumes minimal knowledge of statistics, and no previous knowledge of demography. The authors have developed a set of R packages implementing the methods. Data and code for all applications in the book are available on www.bdef-book.com. "This book will be welcome for the scientific community of forecasters...as it presents a new approach which has already given important results and which, in my opinion, will increase its importance in the future." ~Daniel Courgeau, Institut national d'études démographiques

Bayesian Population Analysis Using WinBUGS

Bayesian Population Analysis Using WinBUGS PDF Author: Marc Kéry
Publisher: Academic Press
ISBN: 0123870208
Category : Computers
Languages : en
Pages : 556

Get Book Here

Book Description
Bayesian statistics has exploded into biology and its sub-disciplines, such as ecology, over the past decade. The free software program WinBUGS, and its open-source sister OpenBugs, is currently the only flexible and general-purpose program available with which the average ecologist can conduct standard and non-standard Bayesian statistics. Comprehensive and richly commented examples illustrate a wide range of models that are most relevant to the research of a modern population ecologist All WinBUGS/OpenBUGS analyses are completely integrated in software R Includes complete documentation of all R and WinBUGS code required to conduct analyses and shows all the necessary steps from having the data in a text file out of Excel to interpreting and processing the output from WinBUGS in R

Integrated Population Models

Integrated Population Models PDF Author: Michael Schaub
Publisher: Academic Press
ISBN: 0128209151
Category : Science
Languages : en
Pages : 640

Get Book Here

Book Description
Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. - Offers practical and accessible ecological applications of IPMs (integrated population models) - Provides full documentation of analyzed code in the Bayesian framework - Written and structured for an easy approach to the subject, especially for non-statisticians

Developments in Demographic Forecasting

Developments in Demographic Forecasting PDF Author: Stefano Mazzuco
Publisher: Springer Nature
ISBN: 3030424723
Category : Social Science
Languages : en
Pages : 261

Get Book Here

Book Description
This open access book presents new developments in the field of demographic forecasting, covering both mortality, fertility and migration. For each component emerging methods to forecast them are presented. Moreover, instruments for forecasting evaluation are provided. Bayesian models, nonparametric models, cohort approaches, elicitation of expert opinion, evaluation of probabilistic forecasts are some of the topics covered in the book. In addition, the book is accompanied by complementary material on the web allowing readers to practice with some of the ideas exposed in the book. Readers are encouraged to use this material to apply the new methods to their own data. The book is an important read for demographers, applied statisticians, as well as other social scientists interested or active in the field of population forecasting. Professional population forecasters in statistical agencies will find useful new ideas in various chapters.

Agent-Based Modelling in Population Studies

Agent-Based Modelling in Population Studies PDF Author: André Grow
Publisher: Springer
ISBN: 3319322834
Category : Social Science
Languages : en
Pages : 511

Get Book Here

Book Description
This book examines the use of agent-based modelling (ABM) in population studies, from concepts to applications, best practices to future developments. It features papers written by leading experts in the field that will help readers to better understand the usefulness of ABM for population projections, how ABM can be injected with empirical data to achieve a better match between model and reality, how geographic information can be fruitfully used in ABM, and how ABM results can be reported effectively and correctly. Coverage ranges from detailing the relation between ABM and existing paradigms in population studies to infusing agent-based models with empirical data. The papers show the benefits that ABM offers the field, including enhanced theory formation by better linking the micro level with the macro level, the ability to represent populations more adequately as complex systems, and the possibility to study rare events and the implications of alternative mechanisms in artificial laboratories. In addition, readers will discover guidelines and best practices with detailed examples of how to apply agent-based models in different areas of population research, including human mating behaviour, migration, and socio-structural determinants of health behaviours. Earlier versions of the papers in this book have been presented at the workshop “Recent Developments and Future Directions in Agent-Based Modelling in Population Studies,” which took place at the University of Leuven (KU Leuven), Belgium, in September 2014. The book will contribute to the development of best practices in the field and will provide a solid point of reference for scholars who want to start using agent-based modelling in their own research.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Get Book Here

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Forecasting International Migration in Europe: A Bayesian View

Forecasting International Migration in Europe: A Bayesian View PDF Author: Jakub Bijak
Publisher: Springer Science & Business Media
ISBN: 9048188970
Category : Social Science
Languages : en
Pages : 318

Get Book Here

Book Description
International migration is becoming an increasingly important element of contemporary demographic dynamics and yet, due to its high volatility, it remains the most unpredictable element of population change. In Europe, population forecasting is especially difficult because good-quality data on migration are lacking. There is a clear need for reliable methods of predicting migration since population forecasts are indispensable for rational decision making in many areas, including labour markets, social security or spatial planning and organisation. In addressing these issues, this book adopts a Bayesian statistical perspective, which allows for a formal incorporation of expert judgement, while describing uncertainty in a coherent and explicit manner. No prior knowledge of Bayesian statistics is assumed. The outcomes are discussed from the point of view of forecast users (decision makers), with the aim to show the relevance and usefulness of the presented methods in practical applications.