Author: Nicholas Manton
Publisher: Cambridge University Press
ISBN: 1139454692
Category : Science
Languages : en
Pages : 507
Book Description
Topological solitons occur in many nonlinear classical field theories. They are stable, particle-like objects, with finite mass and a smooth structure. Examples are monopoles and Skyrmions, Ginzburg-Landau vortices and sigma-model lumps, and Yang-Mills instantons. This book is a comprehensive survey of static topological solitons and their dynamical interactions. Particular emphasis is placed on the solitons which satisfy first-order Bogomolny equations. For these, the soliton dynamics can be investigated by finding the geodesics on the moduli space of static multi-soliton solutions. Remarkable scattering processes can be understood this way. The book starts with an introduction to classical field theory, and a survey of several mathematical techniques useful for understanding many types of topological soliton. Subsequent chapters explore key examples of solitons in one, two, three and four dimensions. The final chapter discusses the unstable sphaleron solutions which exist in several field theories.
Topological Solitons
Author: Nicholas Manton
Publisher: Cambridge University Press
ISBN: 1139454692
Category : Science
Languages : en
Pages : 507
Book Description
Topological solitons occur in many nonlinear classical field theories. They are stable, particle-like objects, with finite mass and a smooth structure. Examples are monopoles and Skyrmions, Ginzburg-Landau vortices and sigma-model lumps, and Yang-Mills instantons. This book is a comprehensive survey of static topological solitons and their dynamical interactions. Particular emphasis is placed on the solitons which satisfy first-order Bogomolny equations. For these, the soliton dynamics can be investigated by finding the geodesics on the moduli space of static multi-soliton solutions. Remarkable scattering processes can be understood this way. The book starts with an introduction to classical field theory, and a survey of several mathematical techniques useful for understanding many types of topological soliton. Subsequent chapters explore key examples of solitons in one, two, three and four dimensions. The final chapter discusses the unstable sphaleron solutions which exist in several field theories.
Publisher: Cambridge University Press
ISBN: 1139454692
Category : Science
Languages : en
Pages : 507
Book Description
Topological solitons occur in many nonlinear classical field theories. They are stable, particle-like objects, with finite mass and a smooth structure. Examples are monopoles and Skyrmions, Ginzburg-Landau vortices and sigma-model lumps, and Yang-Mills instantons. This book is a comprehensive survey of static topological solitons and their dynamical interactions. Particular emphasis is placed on the solitons which satisfy first-order Bogomolny equations. For these, the soliton dynamics can be investigated by finding the geodesics on the moduli space of static multi-soliton solutions. Remarkable scattering processes can be understood this way. The book starts with an introduction to classical field theory, and a survey of several mathematical techniques useful for understanding many types of topological soliton. Subsequent chapters explore key examples of solitons in one, two, three and four dimensions. The final chapter discusses the unstable sphaleron solutions which exist in several field theories.
Topological and Non-Topological Solitons in Scalar Field Theories
Author: Yakov M. Shnir
Publisher: Cambridge University Press
ISBN: 1316997154
Category : Science
Languages : en
Pages : 281
Book Description
Solitons emerge in various non-linear systems as stable localized configurations, behaving in many ways like particles, from non-linear optics and condensed matter to nuclear physics, cosmology and supersymmetric theories. This book provides an introduction to integrable and non-integrable scalar field models with topological and non-topological soliton solutions. Focusing on both topological and non-topological solitons, it brings together debates around solitary waves and construction of soliton solutions in various models and provides a discussion of solitons using simple model examples. These include the Kortenweg-de-Vries system, sine-Gordon model, kinks and oscillons, and skyrmions and hopfions. The classical field theory of scalar field in various spatial dimensions is used throughout the book in presentation of related concepts, both at the technical and conceptual level. Providing a comprehensive introduction to the description and construction of solitons, this book is ideal for researchers and graduate students in mathematics and theoretical physics.
Publisher: Cambridge University Press
ISBN: 1316997154
Category : Science
Languages : en
Pages : 281
Book Description
Solitons emerge in various non-linear systems as stable localized configurations, behaving in many ways like particles, from non-linear optics and condensed matter to nuclear physics, cosmology and supersymmetric theories. This book provides an introduction to integrable and non-integrable scalar field models with topological and non-topological soliton solutions. Focusing on both topological and non-topological solitons, it brings together debates around solitary waves and construction of soliton solutions in various models and provides a discussion of solitons using simple model examples. These include the Kortenweg-de-Vries system, sine-Gordon model, kinks and oscillons, and skyrmions and hopfions. The classical field theory of scalar field in various spatial dimensions is used throughout the book in presentation of related concepts, both at the technical and conceptual level. Providing a comprehensive introduction to the description and construction of solitons, this book is ideal for researchers and graduate students in mathematics and theoretical physics.
Solitons
Author: R. MacKenzie
Publisher: Springer Science & Business Media
ISBN: 1461212545
Category : Science
Languages : en
Pages : 308
Book Description
Solitons were discovered by John Scott Russel in 1834, and have interested scientists and mathematicians ever since. They have been the subject of a large body of research in a wide variety of fields of physics and mathematics, not to mention engineering and other branches of science such as biology. This volume comprises the written versions of the talks presented at a workshop held at Queen's University in 1997, an interdisciplinary meeting wherein top researchers from many fields could meet, interact, and exchange ideas. Topics covered include mathematical and numerical aspects of solitons, as well as applications of solitons to nuclear and particle physics, cosmology, and condensed-matter physics. The book should be of interest to researchers in any field in which solitons are encountered.
Publisher: Springer Science & Business Media
ISBN: 1461212545
Category : Science
Languages : en
Pages : 308
Book Description
Solitons were discovered by John Scott Russel in 1834, and have interested scientists and mathematicians ever since. They have been the subject of a large body of research in a wide variety of fields of physics and mathematics, not to mention engineering and other branches of science such as biology. This volume comprises the written versions of the talks presented at a workshop held at Queen's University in 1997, an interdisciplinary meeting wherein top researchers from many fields could meet, interact, and exchange ideas. Topics covered include mathematical and numerical aspects of solitons, as well as applications of solitons to nuclear and particle physics, cosmology, and condensed-matter physics. The book should be of interest to researchers in any field in which solitons are encountered.
Topological and Non-Topological Solitons in Scalar Field Theories
Author: Yakov M. Shnir
Publisher: Cambridge University Press
ISBN: 1108429912
Category : Science
Languages : en
Pages : 281
Book Description
An introduction to integrable and non-integrable scalar field models, with topological and non-topological soliton solutions. Focusing on both topological and non-topological solitons, this book brings together discussion of solitary waves and construction of soliton solutions and provides a discussion of solitons using simple model examples.
Publisher: Cambridge University Press
ISBN: 1108429912
Category : Science
Languages : en
Pages : 281
Book Description
An introduction to integrable and non-integrable scalar field models, with topological and non-topological soliton solutions. Focusing on both topological and non-topological solitons, this book brings together discussion of solitary waves and construction of soliton solutions and provides a discussion of solitons using simple model examples.
Solitons
Author: Boling Guo
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110549417
Category : Mathematics
Languages : en
Pages : 463
Book Description
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110549417
Category : Mathematics
Languages : en
Pages : 463
Book Description
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents
Solitons
Author: S.E. Trullinger
Publisher: Elsevier
ISBN: 0444598294
Category : Science
Languages : en
Pages : 916
Book Description
In the twenty years since Zabusky and Kruskal coined the term ``soliton'', this concept changed the outlook on certain types of nonlinear phenomena and found its way into all branches of physics. The present volume deals with a great variety of applications of the new concept in condensed-matter physics, which is particularly reached in experimentally observable occurrences. The presentation is not centred around the mathematical aspects; the emphasis is on the physical nature of the nonlinear phenomena occurring in particular situations.With its emphasis on concrete, mostly experimentally verifiable cases, ``Solitons'' constitutes a very readable and instructive introduction to the subject as well as an up-to-date account of current developments in a field of research reaching maturity.
Publisher: Elsevier
ISBN: 0444598294
Category : Science
Languages : en
Pages : 916
Book Description
In the twenty years since Zabusky and Kruskal coined the term ``soliton'', this concept changed the outlook on certain types of nonlinear phenomena and found its way into all branches of physics. The present volume deals with a great variety of applications of the new concept in condensed-matter physics, which is particularly reached in experimentally observable occurrences. The presentation is not centred around the mathematical aspects; the emphasis is on the physical nature of the nonlinear phenomena occurring in particular situations.With its emphasis on concrete, mostly experimentally verifiable cases, ``Solitons'' constitutes a very readable and instructive introduction to the subject as well as an up-to-date account of current developments in a field of research reaching maturity.
Solitons And Particles
Author: Giulio Soliani
Publisher: World Scientific
ISBN: 9814513504
Category : Science
Languages : en
Pages : 837
Book Description
This is the most up-to-date book on solitons and is divided into two parts. Part 1: Detailed introductory lectures on different aspects of solitons plus lectures on the mathematical aspects on this subject. Part 2: Is a collection of reprints on mathematical theories of solitons, solitons in field theory, solitons as particles and their properties, especially topological and physical properties. This book is aimed at a wide audience of physicists and mathematicians. It is an ideal reference book for young researchers and graduate students.
Publisher: World Scientific
ISBN: 9814513504
Category : Science
Languages : en
Pages : 837
Book Description
This is the most up-to-date book on solitons and is divided into two parts. Part 1: Detailed introductory lectures on different aspects of solitons plus lectures on the mathematical aspects on this subject. Part 2: Is a collection of reprints on mathematical theories of solitons, solitons in field theory, solitons as particles and their properties, especially topological and physical properties. This book is aimed at a wide audience of physicists and mathematicians. It is an ideal reference book for young researchers and graduate students.
The Versatile Soliton
Author: Alexandre T. Filippov
Publisher: Springer Science & Business Media
ISBN: 0817649743
Category : Mathematics
Languages : en
Pages : 275
Book Description
In this engaging book, the concept of the soliton is traced from the beginning of the last century to modern times with its recent applications.
Publisher: Springer Science & Business Media
ISBN: 0817649743
Category : Mathematics
Languages : en
Pages : 275
Book Description
In this engaging book, the concept of the soliton is traced from the beginning of the last century to modern times with its recent applications.
Solitons
Author: Mohamed Atef Helal
Publisher: Springer Nature
ISBN: 1071624571
Category : Science
Languages : en
Pages : 483
Book Description
This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Linear Schrödinger (NLS), Korteweg-de-Vries Burger’s (KdVB), etc. Different linear mathematical methods can be used to solve these models analytically, such as the Inverse Scattering Transformation (IST), Adomian Decomposition Method, Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM). Other non-analytic methods use the computational techniques available in such popular mathematical packages as Mathematica, Maple, and MATLAB. The main purpose of this volume is to provide physicists, engineers, and their students with the proper methods and tools to solve the soliton equations, and to discover the new possibilities of using solitons in multi-disciplinary areas ranging from telecommunications to biology, cosmology, and oceanographic studies.
Publisher: Springer Nature
ISBN: 1071624571
Category : Science
Languages : en
Pages : 483
Book Description
This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Linear Schrödinger (NLS), Korteweg-de-Vries Burger’s (KdVB), etc. Different linear mathematical methods can be used to solve these models analytically, such as the Inverse Scattering Transformation (IST), Adomian Decomposition Method, Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM). Other non-analytic methods use the computational techniques available in such popular mathematical packages as Mathematica, Maple, and MATLAB. The main purpose of this volume is to provide physicists, engineers, and their students with the proper methods and tools to solve the soliton equations, and to discover the new possibilities of using solitons in multi-disciplinary areas ranging from telecommunications to biology, cosmology, and oceanographic studies.
Solitons in Molecular Systems
Author: Davydov
Publisher: Springer Science & Business Media
ISBN: 9401730253
Category : Science
Languages : en
Pages : 337
Book Description
Approach your problems from the It isn't that they can't see the end and begin with the answers. solution. It is that they can't Then one day, perhaps you will see the problem. find the final question. G.K. Chesterton. The Scandal of 'The Hermit Clad in Crane Father Brown 'The Point of a Pin'. Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electric engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "complete integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classifica tion schemes. The draw upon widely different sections of mathematics.
Publisher: Springer Science & Business Media
ISBN: 9401730253
Category : Science
Languages : en
Pages : 337
Book Description
Approach your problems from the It isn't that they can't see the end and begin with the answers. solution. It is that they can't Then one day, perhaps you will see the problem. find the final question. G.K. Chesterton. The Scandal of 'The Hermit Clad in Crane Father Brown 'The Point of a Pin'. Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electric engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "complete integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classifica tion schemes. The draw upon widely different sections of mathematics.