Author: Lars Brink
Publisher: World Scientific
ISBN: 9813271353
Category : Science
Languages : en
Pages : 263
Book Description
Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.
Topological Phase Transitions And New Developments
Author: Lars Brink
Publisher: World Scientific
ISBN: 9813271353
Category : Science
Languages : en
Pages : 263
Book Description
Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.
Publisher: World Scientific
ISBN: 9813271353
Category : Science
Languages : en
Pages : 263
Book Description
Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.
Topological Phases of Matter
Author: Roderich Moessner
Publisher: Cambridge University Press
ISBN: 1107105536
Category : Mathematics
Languages : en
Pages : 393
Book Description
This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.
Publisher: Cambridge University Press
ISBN: 1107105536
Category : Mathematics
Languages : en
Pages : 393
Book Description
This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.
Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions
Author: Yuriy M. Bunkov
Publisher: Springer Science & Business Media
ISBN: 9780792362050
Category : Science
Languages : en
Pages : 70
Book Description
Topological defects formed at symmetry-breaking phase transitions play an important role in many different fields of physics. They appear in many condensed-matter systems at low temperature; examples include vortices in superfluid helium-4, a rich variety of defects in helium-3, quantized mag netic flux tubes in type-II superconductors, and disclination lines and other defects in liquid crystals. In cosmology, unified gauge theories of particle interactions suggest a sequence of phase transitions in the very early uni verse some of which may lead to defect formation. In astrophysics, defects play an important role in the dynamics of neutron stars. In 1997 the European Science Foundation started the scientific network "Topological defects" headed by Tom Kibble. This network has provided us with a unique opportunity of establishing a collaboration between the representatives of these very different branches of modern physics. The NATO-ASI (Advanced Study Institute), held in Les Houches in February 1999 thanks to the support of the Scientific Division of NATO, the European Science Foundation and the CNRS, represents a key event of this ESF network. It brought together participants from widely different fields, with diverse expertise and vocabulary, fostering the exchange of ideas. The lectures given by particle physicists, cosmologists and condensed matter physicists are the result of the fruitful collaborations established since 1997 between groups in several European countries and in the U.S.A.
Publisher: Springer Science & Business Media
ISBN: 9780792362050
Category : Science
Languages : en
Pages : 70
Book Description
Topological defects formed at symmetry-breaking phase transitions play an important role in many different fields of physics. They appear in many condensed-matter systems at low temperature; examples include vortices in superfluid helium-4, a rich variety of defects in helium-3, quantized mag netic flux tubes in type-II superconductors, and disclination lines and other defects in liquid crystals. In cosmology, unified gauge theories of particle interactions suggest a sequence of phase transitions in the very early uni verse some of which may lead to defect formation. In astrophysics, defects play an important role in the dynamics of neutron stars. In 1997 the European Science Foundation started the scientific network "Topological defects" headed by Tom Kibble. This network has provided us with a unique opportunity of establishing a collaboration between the representatives of these very different branches of modern physics. The NATO-ASI (Advanced Study Institute), held in Les Houches in February 1999 thanks to the support of the Scientific Division of NATO, the European Science Foundation and the CNRS, represents a key event of this ESF network. It brought together participants from widely different fields, with diverse expertise and vocabulary, fostering the exchange of ideas. The lectures given by particle physicists, cosmologists and condensed matter physicists are the result of the fruitful collaborations established since 1997 between groups in several European countries and in the U.S.A.
Understanding Quantum Phase Transitions
Author: Lincoln Carr
Publisher: CRC Press
ISBN: 1439802610
Category : Science
Languages : en
Pages : 754
Book Description
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit
Publisher: CRC Press
ISBN: 1439802610
Category : Science
Languages : en
Pages : 754
Book Description
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit
Topology in Condensed Matter
Author: Michael I. Monastyrsky
Publisher: Springer Science & Business Media
ISBN: 3540312641
Category : Science
Languages : en
Pages : 263
Book Description
This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.
Publisher: Springer Science & Business Media
ISBN: 3540312641
Category : Science
Languages : en
Pages : 263
Book Description
This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.
Topological Insulators and Topological Superconductors
Author: B. Andrei Bernevig
Publisher: Princeton University Press
ISBN: 1400846730
Category : Science
Languages : en
Pages : 264
Book Description
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Publisher: Princeton University Press
ISBN: 1400846730
Category : Science
Languages : en
Pages : 264
Book Description
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Advanced Topological Insulators
Author: Huixia Luo
Publisher: John Wiley & Sons
ISBN: 111940732X
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
This book is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for researchers and graduate students preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with the fundamental description on the topological phases of matter such as one, two- and three-dimensional topological insulators, and methods and tools for topological material's investigations, topological insulators for advanced optoelectronic devices, topological superconductors, saturable absorber and in plasmonic devices. Advanced Topological Insulators provides researchers and graduate students with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Publisher: John Wiley & Sons
ISBN: 111940732X
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
This book is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for researchers and graduate students preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with the fundamental description on the topological phases of matter such as one, two- and three-dimensional topological insulators, and methods and tools for topological material's investigations, topological insulators for advanced optoelectronic devices, topological superconductors, saturable absorber and in plasmonic devices. Advanced Topological Insulators provides researchers and graduate students with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Quantum Analogues: From Phase Transitions to Black Holes and Cosmology
Author: William Unruh
Publisher: Springer
ISBN: 3540708596
Category : Science
Languages : en
Pages : 306
Book Description
Recently, analogies between laboratory physics (e.g. quantum optics and condensed matter) and gravitational/cosmological phenomena such as black holes have attracted an increasing interest. This book contains a series of selected lectures devoted to this new and rapidly developing field. Various analogies connecting (apparently) different areas in physics are presented in order to bridge the gap between them and to provide an alternative point of view.
Publisher: Springer
ISBN: 3540708596
Category : Science
Languages : en
Pages : 306
Book Description
Recently, analogies between laboratory physics (e.g. quantum optics and condensed matter) and gravitational/cosmological phenomena such as black holes have attracted an increasing interest. This book contains a series of selected lectures devoted to this new and rapidly developing field. Various analogies connecting (apparently) different areas in physics are presented in order to bridge the gap between them and to provide an alternative point of view.
A Short Course on Topological Insulators
Author: János K. Asbóth
Publisher: Springer
ISBN: 3319256076
Category : Science
Languages : en
Pages : 176
Book Description
This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.
Publisher: Springer
ISBN: 3319256076
Category : Science
Languages : en
Pages : 176
Book Description
This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.
Complex Nonlinearity
Author: Vladimir G. Ivancevic
Publisher: Springer Science & Business Media
ISBN: 3540793577
Category : Science
Languages : en
Pages : 855
Book Description
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
Publisher: Springer Science & Business Media
ISBN: 3540793577
Category : Science
Languages : en
Pages : 855
Book Description
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.