Topological Methods in Hydrodynamics

Topological Methods in Hydrodynamics PDF Author: Vladimir I. Arnold
Publisher: Springer Science & Business Media
ISBN: 0387225897
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.

Topological Methods in Hydrodynamics

Topological Methods in Hydrodynamics PDF Author: Vladimir I. Arnold
Publisher: Springer Science & Business Media
ISBN: 0387225897
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.

Lectures on Topological Fluid Mechanics

Lectures on Topological Fluid Mechanics PDF Author: Mitchell A. Berger
Publisher: Springer Science & Business Media
ISBN: 3642008364
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
This volume contains a wide-ranging collection of valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics to DNA tangles and knotted DNAs in sedimentation.

Topological Aspects of the Dynamics of Fluids and Plasmas

Topological Aspects of the Dynamics of Fluids and Plasmas PDF Author: H.K. Moffatt
Publisher: Springer Science & Business Media
ISBN: 9401735506
Category : Science
Languages : en
Pages : 597

Get Book Here

Book Description
This volume contains papers arising out of the program of the Institute for Theoretical Physics (ITP) of the University of California at Santa Bar bara, August-December 1991, on the subject "Topological Fluid Dynamics". The first group of papers cover the lectures on Knot Theory, Relaxation un der Topological Constraints, Kinematics of Stretching, and Fast Dynamo Theory presented at the initial Pedagogical Workshop of the program. The remaining papers were presented at the subsequent NATO Advanced Re search Workshop or were written during the course of the program. We wish to acknowledge the support of the NATO Science Committee in making this workshop possible. The scope of "Topological Fluid Dynamics" was defined by an earlier Symposium of the International Union of Theoretical and Applied Mechan ics (IUTAM) held in Cambridge, England in August, 1989, the Proceedings of which were published (Eds. H.K. Moffatt and A. Tsinober) by Cambridge University Press in 1990. The proposal to hold an ITP program on this sub ject emerged from that Symposium, and we are grateful to John Greene and Charlie Kennel at whose encouragement the original proposal was formu lated. Topological fluid dynamics covers a range of problems, particularly those involving vortex tubes and/or magnetic flux tubes in nearly ideal fluids, for which topological structures can be identified and to some extent quantified.

An Introduction to the Geometry and Topology of Fluid Flows

An Introduction to the Geometry and Topology of Fluid Flows PDF Author: Renzo L. Ricca
Publisher: Springer Science & Business Media
ISBN: 9401004463
Category : Science
Languages : en
Pages : 346

Get Book Here

Book Description
Leading experts present a unique, invaluable introduction to the study of the geometry and typology of fluid flows. From basic motions on curves and surfaces to the recent developments in knots and links, the reader is gradually led to explore the fascinating world of geometric and topological fluid mechanics. Geodesics and chaotic orbits, magnetic knots and vortex links, continual flows and singularities become alive with more than 160 figures and examples. In the opening article, H. K. Moffatt sets the pace, proposing eight outstanding problems for the 21st century. The book goes on to provide concepts and techniques for tackling these and many other interesting open problems.

Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws

Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws PDF Author: Gary Webb
Publisher: Springer
ISBN: 3319725114
Category : Science
Languages : en
Pages : 306

Get Book Here

Book Description
This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helicity, Ertels’ theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant. The book develops the non-canonical Hamiltonian approach to MHD using the non-canonical Poisson bracket, while also refining the multisymplectic approach to ideal MHD and obtaining novel nonlocal conservation laws. It also briefly discusses Anco and Bluman’s direct method for deriving conservation laws. A range of examples is used to illustrate topological invariants in MHD and fluid dynamics, including the Hopf invariant, the Calugareanu invariant, the Taylor magnetic helicity reconnection hypothesis for magnetic fields in highly conducting plasmas, and the magnetic helicity of Alfvén simple waves, MHD topological solitons, and the Parker Archimedean spiral magnetic field. The Lagrangian map is used to obtain a class of solutions for incompressible MHD. The Aharonov-Bohm interpretation of magnetic helicity and cross helicity is discussed. In closing, examples of magnetosonic N-waves are used to illustrate the role of the wave number and group velocity concepts for MHD waves. This self-contained and pedagogical guide to the fundamentals will benefit postgraduate-level newcomers and seasoned researchers alike.

Computational Fluid Mechanics and Heat Transfer, Second Edition

Computational Fluid Mechanics and Heat Transfer, Second Edition PDF Author: Richard H. Pletcher
Publisher: CRC Press
ISBN: 9781560320463
Category : Science
Languages : en
Pages : 828

Get Book Here

Book Description
This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.

Kinetic Theory and Fluid Dynamics

Kinetic Theory and Fluid Dynamics PDF Author: Yoshio Sone
Publisher: Springer Science & Business Media
ISBN: 146120061X
Category : Science
Languages : en
Pages : 358

Get Book Here

Book Description
This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.

Atmospheric and Oceanic Fluid Dynamics

Atmospheric and Oceanic Fluid Dynamics PDF Author: Geoffrey K. Vallis
Publisher: Cambridge University Press
ISBN: 1139459961
Category : Science
Languages : en
Pages : 772

Get Book Here

Book Description
Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.

Nature-Inspired Fluid Mechanics

Nature-Inspired Fluid Mechanics PDF Author: Cameron Tropea
Publisher: Springer Science & Business Media
ISBN: 3642283020
Category : Technology & Engineering
Languages : en
Pages : 367

Get Book Here

Book Description
This book is the closing report of the national priority program Nature-Inspired Fluid Mechanics (Schwerpunktprogramm SPP 1207: Strömungsbeeinflussung in der Natur und Technik). Nature-inspired fluid mechanics is one subset of biomimetics, a discipline which has received increased attention over the last decade, with numerous faculties and degree courses devoted solely to exploring ‘nature as a model’ for engineering applications. To save locomotion energy, evolution has optimized the design of animals such that friction loss is minimized. In addition to many morphological adaptations, animals that are often exposed to water or air currents have developed special behaviors that allow them to use the energy contained in air or water fluctuations for energy savings. Such flow manipulation and control is not only important for many animals, but also for many engineering applications. Since living beings have been optimized by several million years of evolution it is very likely that many engineering disciplines can profit from the study of systems found in nature. Curiously, there has been little serious cross-disciplinary work and information exchange on the topic of fluid dynamics and flow control and this was the initial motivation to establish this national priority program.

Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics

Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics PDF Author: Titus Petrila
Publisher: Springer Science & Business Media
ISBN: 0387238387
Category : Mathematics
Languages : en
Pages : 513

Get Book Here

Book Description
The present book – through the topics and the problems approach – aims at filling a gap, a real need in our literature concerning CFD (Computational Fluid Dynamics). Our presentation results from a large documentation and focuses on reviewing the present day most important numerical and computational methods in CFD. Many theoreticians and experts in the field have expressed their - terest in and need for such an enterprise. This was the motivation for carrying out our study and writing this book. It contains an important systematic collection of numerical working instruments in Fluid Dyn- ics. Our current approach to CFD started ten years ago when the Univ- sity of Paris XI suggested a collaboration in the field of spectral methods for fluid dynamics. Soon after – preeminently studying the numerical approaches to Navier–Stokes nonlinearities – we completed a number of research projects which we presented at the most important inter- tional conferences in the field, to gratifying appreciation. An important qualitative step in our work was provided by the dev- opment of a computational basis and by access to a number of expert softwares. This fact allowed us to generate effective working programs for most of the problems and examples presented in the book, an - pect which was not taken into account in most similar studies that have already appeared all over the world.