Elements of Topological Dynamics

Elements of Topological Dynamics PDF Author: J. de Vries
Publisher: Springer Science & Business Media
ISBN: 9401581711
Category : Mathematics
Languages : en
Pages : 762

Get Book Here

Book Description
This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.

Elements of Topological Dynamics

Elements of Topological Dynamics PDF Author: J. de Vries
Publisher: Springer Science & Business Media
ISBN: 9401581711
Category : Mathematics
Languages : en
Pages : 762

Get Book Here

Book Description
This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.

Topological Dynamics and Applications

Topological Dynamics and Applications PDF Author: Robert Ellis
Publisher: American Mathematical Soc.
ISBN: 0821806084
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
This book is a very readable exposition of the modern theory of topological dynamics and presents diverse applications to such areas as ergodic theory, combinatorial number theory and differential equations. There are three parts: 1) The abstract theory of topological dynamics is discussed, including a comprehensive survey by Furstenberg and Glasner on the work and influence of R. Ellis. Presented in book form for the first time are new topics in the theory of dynamical systems, such as weak almost-periodicity, hidden eigenvalues, a natural family of factors and topological analogues of ergodic decomposition. 2) The power of abstract techniques is demonstrated by giving a very wide range of applications to areas of ergodic theory, combinatorial number theory, random walks on groups and others. 3) Applications to non-autonomous linear differential equations are shown. Exposition on recent results about Floquet theory, bifurcation theory and Lyapanov exponents is given.

Topological Dynamics of Random Dynamical Systems

Topological Dynamics of Random Dynamical Systems PDF Author: Nguyen Dinh Cong
Publisher: Oxford University Press
ISBN: 9780198501572
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
This book is the first systematic treatment of the theory of topological dynamics of random dynamical systems. A relatively new field, the theory of random dynamical systems unites and develops the classical deterministic theory of dynamical systems and probability theory, finding numerous applications in disciplines ranging from physics and biology to engineering, finance and economics. This book presents in detail the solutions to the most fundamental problems of topological dynamics: linearization of nonlinear smooth systems, classification, and structural stability of linear hyperbolic systems. Employing the tools and methods of algebraic ergodic theory, the theory presented in the book has surprisingly beautiful results showing the richness of random dynamical systems as well as giving a gentle generalization of the classical deterministic theory.

Topology with Applications

Topology with Applications PDF Author: Somashekhar A. Naimpally
Publisher: World Scientific
ISBN: 9814407666
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description
The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces.This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising.It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications.

Networks, Topology and Dynamics

Networks, Topology and Dynamics PDF Author: Ahmad K. Naimzada
Publisher: Springer Science & Business Media
ISBN: 3540684093
Category : Business & Economics
Languages : en
Pages : 292

Get Book Here

Book Description
There is convergent consensus among scientists that many social, economic and ?nancial phenomena can be described by a network of agents and their inter- tions. Surprisingly, even though the application ?elds are quite different, those n- works often show a common behaviour. Thus, their topological properties can give useful insights on how the network is structured, which are the most “important” nodes/agents, how the network reacts to new arrivals. Moreover the network, once included into a dynamic context, helps to model many phenomena. Among the t- ics in which topology and dynamics are the essential tools, we will focus on the diffusion of technologies and fads, the rise of industrial districts, the evolution of ?nancial markets, cooperation and competition, information ?ows, centrality and prestige. The volume, including recent contributions to the ?eld of network modelling, is based on the communications presented at NET 2006 (Verbania, Italy) and NET 2007 (Urbino, Italy); offers a wide range of recent advances, both theoretical and methodological, that will interest academics as well as practitioners. Theory and applications are nicely integrated: theoretical papers deal with graph theory, game theory, coalitions, dynamics, consumer behavior, segregation models and new contributions to the above mentioned area. The applications cover a wide range: airline transportation, ?nancial markets, work team organization, labour and credit market.

Dynamical Systems and Evolution Equations

Dynamical Systems and Evolution Equations PDF Author: John A. Walker
Publisher: Springer Science & Business Media
ISBN: 1468410369
Category : Computers
Languages : en
Pages : 244

Get Book Here

Book Description
This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.

Topological Dynamics

Topological Dynamics PDF Author: Walter Helbig Gottschalk
Publisher: American Mathematical Soc.
ISBN: 9780821874691
Category : Mathematics
Languages : en
Pages : 184

Get Book Here

Book Description
Topological dynamics is the study of transformation groups with respect to those topological properties whose prototype occurred in classical dynamics. In this volume, Part One contains the general theory. Part Two contains notable examples of flows which have contributed to the general theory of topological dynamics and which have in turn have been illuminated by the general theory of topological dynamics.

Generalized Ordinary Differential Equations in Abstract Spaces and Applications

Generalized Ordinary Differential Equations in Abstract Spaces and Applications PDF Author: Everaldo M. Bonotto
Publisher: John Wiley & Sons
ISBN: 1119654939
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and App­lications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.

Introduction to the Modern Theory of Dynamical Systems

Introduction to the Modern Theory of Dynamical Systems PDF Author: Anatole Katok
Publisher: Cambridge University Press
ISBN: 9780521575577
Category : Mathematics
Languages : en
Pages : 828

Get Book Here

Book Description
This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

Differential Geometry and Topology

Differential Geometry and Topology PDF Author: Keith Burns
Publisher: CRC Press
ISBN: 9781584882534
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.