Author: Serge Levendorskii
Publisher: Springer Science & Business Media
ISBN: 9401712158
Category : Mathematics
Languages : en
Pages : 442
Book Description
This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Grding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.
Degenerate Elliptic Equations
Nonlinear Potential Theory of Degenerate Elliptic Equations
Author: Juha Heinonen
Publisher: Courier Dover Publications
ISBN: 0486830462
Category : Mathematics
Languages : en
Pages : 417
Book Description
A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. 1993 edition.
Publisher: Courier Dover Publications
ISBN: 0486830462
Category : Mathematics
Languages : en
Pages : 417
Book Description
A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. 1993 edition.
Degenerate Elliptic Equations
Author: Serge Levendorskii
Publisher: Springer Science & Business Media
ISBN: 9780792323051
Category : Mathematics
Languages : en
Pages : 458
Book Description
This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Gårding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 9780792323051
Category : Mathematics
Languages : en
Pages : 458
Book Description
This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Gårding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.
Weighted Sobolev Spaces and Degenerate Elliptic Equations
Author: Albo Carlos Cavalheiro
Publisher: Cambridge Scholars Publishing
ISBN: 1527551679
Category : Mathematics
Languages : en
Pages : 333
Book Description
In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is disturbed in the sense that some degeneration or singularity appears. This bad behavior can be caused by the coefficients of the corresponding differential operator as well as by the solution itself. There are several very concrete problems in various practices which lead to such differential equations, such as glaciology, non-Newtonian fluid mechanics, flows through porous media, differential geometry, celestial mechanics, climatology, and reaction-diffusion problems, among others. This book is based on research by the author on degenerate elliptic equations. This book will be a useful reference source for graduate students and researchers interested in differential equations.
Publisher: Cambridge Scholars Publishing
ISBN: 1527551679
Category : Mathematics
Languages : en
Pages : 333
Book Description
In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is disturbed in the sense that some degeneration or singularity appears. This bad behavior can be caused by the coefficients of the corresponding differential operator as well as by the solution itself. There are several very concrete problems in various practices which lead to such differential equations, such as glaciology, non-Newtonian fluid mechanics, flows through porous media, differential geometry, celestial mechanics, climatology, and reaction-diffusion problems, among others. This book is based on research by the author on degenerate elliptic equations. This book will be a useful reference source for graduate students and researchers interested in differential equations.
Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations
Author: Maria Colombo
Publisher: Springer
ISBN: 8876426078
Category : Mathematics
Languages : en
Pages : 285
Book Description
The first part of the book is devoted to the transport equation for a given vector field, exploiting the lagrangian structure of solutions. It also treats the regularity of solutions of some degenerate elliptic equations, which appear in the eulerian counterpart of some transport models with congestion. The second part of the book deals with the lagrangian structure of solutions of the Vlasov-Poisson system, which describes the evolution of a system of particles under the self-induced gravitational/electrostatic field, and the existence of solutions of the semigeostrophic system, used in meteorology to describe the motion of large-scale oceanic/atmospheric flows.
Publisher: Springer
ISBN: 8876426078
Category : Mathematics
Languages : en
Pages : 285
Book Description
The first part of the book is devoted to the transport equation for a given vector field, exploiting the lagrangian structure of solutions. It also treats the regularity of solutions of some degenerate elliptic equations, which appear in the eulerian counterpart of some transport models with congestion. The second part of the book deals with the lagrangian structure of solutions of the Vlasov-Poisson system, which describes the evolution of a system of particles under the self-induced gravitational/electrostatic field, and the existence of solutions of the semigeostrophic system, used in meteorology to describe the motion of large-scale oceanic/atmospheric flows.
Topics in Analysis and its Applications
Author: Grigor A. Barsegian
Publisher: Springer Science & Business Media
ISBN: 1402021283
Category : Mathematics
Languages : en
Pages : 468
Book Description
Most topics dealt with here deal with complex analysis of both one and several complex variables. Several contributions come from elasticity theory. Areas covered include the theory of p-adic analysis, mappings of bounded mean oscillations, quasiconformal mappings of Klein surfaces, complex dynamics of inverse functions of rational or transcendental entire functions, the nonlinear Riemann-Hilbert problem for analytic functions with nonsmooth target manifolds, the Carleman-Bers-Vekua system, the logarithmic derivative of meromorphic functions, G-lines, computing the number of points in an arbitrary finite semi-algebraic subset, linear differential operators, explicit solution of first and second order systems in bounded domains degenerating at the boundary, the Cauchy-Pompeiu representation in L2 space, strongly singular operators of Calderon-Zygmund type, quadrature solutions to initial and boundary-value problems, the Dirichlet problem, operator theory, tomography, elastic displacements and stresses, quantum chaos, and periodic wavelets.
Publisher: Springer Science & Business Media
ISBN: 1402021283
Category : Mathematics
Languages : en
Pages : 468
Book Description
Most topics dealt with here deal with complex analysis of both one and several complex variables. Several contributions come from elasticity theory. Areas covered include the theory of p-adic analysis, mappings of bounded mean oscillations, quasiconformal mappings of Klein surfaces, complex dynamics of inverse functions of rational or transcendental entire functions, the nonlinear Riemann-Hilbert problem for analytic functions with nonsmooth target manifolds, the Carleman-Bers-Vekua system, the logarithmic derivative of meromorphic functions, G-lines, computing the number of points in an arbitrary finite semi-algebraic subset, linear differential operators, explicit solution of first and second order systems in bounded domains degenerating at the boundary, the Cauchy-Pompeiu representation in L2 space, strongly singular operators of Calderon-Zygmund type, quadrature solutions to initial and boundary-value problems, the Dirichlet problem, operator theory, tomography, elastic displacements and stresses, quantum chaos, and periodic wavelets.
Semilinear Elliptic Equations for Beginners
Author: Marino Badiale
Publisher: Springer Science & Business Media
ISBN: 0857292277
Category : Mathematics
Languages : en
Pages : 204
Book Description
Semilinear elliptic equations are of fundamental importance for the study of geometry, physics, mechanics, engineering and life sciences. The variational approach to these equations has experienced spectacular success in recent years, reaching a high level of complexity and refinement, with a multitude of applications. Additionally, some of the simplest variational methods are evolving as classical tools in the field of nonlinear differential equations. This book is an introduction to variational methods and their applications to semilinear elliptic problems. Providing a comprehensive overview on the subject, this book will support both student and teacher engaged in a first course in nonlinear elliptic equations. The material is introduced gradually, and in some cases redundancy is added to stress the fundamental steps in theory-building. Topics include differential calculus for functionals, linear theory, and existence theorems by minimization techniques and min-max procedures. Requiring a basic knowledge of Analysis, Functional Analysis and the most common function spaces, such as Lebesgue and Sobolev spaces, this book will be of primary use to graduate students based in the field of nonlinear partial differential equations. It will also serve as valuable reading for final year undergraduates seeking to learn about basic working tools from variational methods and the management of certain types of nonlinear problems.
Publisher: Springer Science & Business Media
ISBN: 0857292277
Category : Mathematics
Languages : en
Pages : 204
Book Description
Semilinear elliptic equations are of fundamental importance for the study of geometry, physics, mechanics, engineering and life sciences. The variational approach to these equations has experienced spectacular success in recent years, reaching a high level of complexity and refinement, with a multitude of applications. Additionally, some of the simplest variational methods are evolving as classical tools in the field of nonlinear differential equations. This book is an introduction to variational methods and their applications to semilinear elliptic problems. Providing a comprehensive overview on the subject, this book will support both student and teacher engaged in a first course in nonlinear elliptic equations. The material is introduced gradually, and in some cases redundancy is added to stress the fundamental steps in theory-building. Topics include differential calculus for functionals, linear theory, and existence theorems by minimization techniques and min-max procedures. Requiring a basic knowledge of Analysis, Functional Analysis and the most common function spaces, such as Lebesgue and Sobolev spaces, this book will be of primary use to graduate students based in the field of nonlinear partial differential equations. It will also serve as valuable reading for final year undergraduates seeking to learn about basic working tools from variational methods and the management of certain types of nonlinear problems.
Contemporary Research in Elliptic PDEs and Related Topics
Author: Serena Dipierro
Publisher: Springer
ISBN: 303018921X
Category : Mathematics
Languages : en
Pages : 502
Book Description
This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.
Publisher: Springer
ISBN: 303018921X
Category : Mathematics
Languages : en
Pages : 502
Book Description
This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.
Lectures on Selected Topics in Mathematical Physics
Author: William A. Schwalm
Publisher: Morgan & Claypool Publishers
ISBN: 1681742306
Category : Science
Languages : en
Pages : 67
Book Description
This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.
Publisher: Morgan & Claypool Publishers
ISBN: 1681742306
Category : Science
Languages : en
Pages : 67
Book Description
This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.
Research Topics in Analysis, Volume II
Author: Shouchuan Hu
Publisher: Springer Nature
ISBN: 3031641892
Category :
Languages : en
Pages : 731
Book Description
Publisher: Springer Nature
ISBN: 3031641892
Category :
Languages : en
Pages : 731
Book Description