Topics in Commutative Ring Theory

Topics in Commutative Ring Theory PDF Author: John J. Watkins
Publisher: Princeton University Press
ISBN: 1400828171
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Topics in Commutative Ring Theory is a textbook for advanced undergraduate students as well as graduate students and mathematicians seeking an accessible introduction to this fascinating area of abstract algebra. Commutative ring theory arose more than a century ago to address questions in geometry and number theory. A commutative ring is a set-such as the integers, complex numbers, or polynomials with real coefficients--with two operations, addition and multiplication. Starting from this simple definition, John Watkins guides readers from basic concepts to Noetherian rings-one of the most important classes of commutative rings--and beyond to the frontiers of current research in the field. Each chapter includes problems that encourage active reading--routine exercises as well as problems that build technical skills and reinforce new concepts. The final chapter is devoted to new computational techniques now available through computers. Careful to avoid intimidating theorems and proofs whenever possible, Watkins emphasizes the historical roots of the subject, like the role of commutative rings in Fermat's last theorem. He leads readers into unexpected territory with discussions on rings of continuous functions and the set-theoretic foundations of mathematics. Written by an award-winning teacher, this is the first introductory textbook to require no prior knowledge of ring theory to get started. Refreshingly informal without ever sacrificing mathematical rigor, Topics in Commutative Ring Theory is an ideal resource for anyone seeking entry into this stimulating field of study.

Topics in Commutative Ring Theory

Topics in Commutative Ring Theory PDF Author: John J. Watkins
Publisher: Princeton University Press
ISBN: 1400828171
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Topics in Commutative Ring Theory is a textbook for advanced undergraduate students as well as graduate students and mathematicians seeking an accessible introduction to this fascinating area of abstract algebra. Commutative ring theory arose more than a century ago to address questions in geometry and number theory. A commutative ring is a set-such as the integers, complex numbers, or polynomials with real coefficients--with two operations, addition and multiplication. Starting from this simple definition, John Watkins guides readers from basic concepts to Noetherian rings-one of the most important classes of commutative rings--and beyond to the frontiers of current research in the field. Each chapter includes problems that encourage active reading--routine exercises as well as problems that build technical skills and reinforce new concepts. The final chapter is devoted to new computational techniques now available through computers. Careful to avoid intimidating theorems and proofs whenever possible, Watkins emphasizes the historical roots of the subject, like the role of commutative rings in Fermat's last theorem. He leads readers into unexpected territory with discussions on rings of continuous functions and the set-theoretic foundations of mathematics. Written by an award-winning teacher, this is the first introductory textbook to require no prior knowledge of ring theory to get started. Refreshingly informal without ever sacrificing mathematical rigor, Topics in Commutative Ring Theory is an ideal resource for anyone seeking entry into this stimulating field of study.

Commutative Ring Theory

Commutative Ring Theory PDF Author: Hideyuki Matsumura
Publisher: Cambridge University Press
ISBN: 9780521367646
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
This book explores commutative ring theory, an important a foundation for algebraic geometry and complex analytical geometry.

Introduction To Commutative Algebra

Introduction To Commutative Algebra PDF Author: Michael F. Atiyah
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140

Get Book Here

Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.

Foundations of Commutative Rings and Their Modules

Foundations of Commutative Rings and Their Modules PDF Author: Fanggui Wang
Publisher: Springer
ISBN: 9811033374
Category : Mathematics
Languages : en
Pages : 714

Get Book Here

Book Description
This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of the pullbacks, especially Milnor squares and D+M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings with finite weak global dimensions are probed, and the local ring of weak global dimension two is elaborated on by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In particular, the Bass–Quillen problem is discussed. Finally, Chapter 11 aims to introduce relative homological algebra, especially where the related concepts of integral domains which appear in classical ideal theory are defined and investigated by using the class of Gorenstein projective modules. Each section of the book is followed by a selection of exercises of varying degrees of difficulty. This book will appeal to a wide readership from graduate students to academic researchers who are interested in studying commutative algebra.

Commutative Algebra

Commutative Algebra PDF Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 1461253500
Category : Mathematics
Languages : en
Pages : 784

Get Book Here

Book Description
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Non-Noetherian Commutative Ring Theory

Non-Noetherian Commutative Ring Theory PDF Author: S.T. Chapman
Publisher: Springer Science & Business Media
ISBN: 9780792364924
Category : Mathematics
Languages : en
Pages : 504

Get Book Here

Book Description
This volume consists of twenty-one articles by many of the most prominent researchers in non-Noetherian commutative ring theory. The articles combine in various degrees surveys of past results, recent results that have never before seen print, open problems, and an extensive bibliography. One hundred open problems supplied by the authors have been collected in the volume's concluding chapter. The entire collection provides a comprehensive survey of the development of the field over the last ten years and points to future directions of research in the area. Audience: Researchers and graduate students; the volume is an appropriate source of material for several semester-long graduate-level seminars and courses.

Non-Unique Factorizations

Non-Unique Factorizations PDF Author: Alfred Geroldinger
Publisher: CRC Press
ISBN: 1420003208
Category : Mathematics
Languages : en
Pages : 723

Get Book Here

Book Description
From its origins in algebraic number theory, the theory of non-unique factorizations has emerged as an independent branch of algebra and number theory. Focused efforts over the past few decades have wrought a great number and variety of results. However, these remain dispersed throughout the vast literature. For the first time, Non-Unique Factoriza

Algebraic Geometry and Commutative Algebra

Algebraic Geometry and Commutative Algebra PDF Author: Siegfried Bosch
Publisher: Springer Nature
ISBN: 1447175239
Category : Mathematics
Languages : en
Pages : 504

Get Book Here

Book Description
Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.

Finite Commutative Rings and Their Applications

Finite Commutative Rings and Their Applications PDF Author: Gilberto Bini
Publisher: Springer Science & Business Media
ISBN: 1461509572
Category : Technology & Engineering
Languages : en
Pages : 181

Get Book Here

Book Description
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.

A Singular Introduction to Commutative Algebra

A Singular Introduction to Commutative Algebra PDF Author: Gert-Martin Greuel
Publisher: Springer Science & Business Media
ISBN: 3662049635
Category : Mathematics
Languages : en
Pages : 601

Get Book Here

Book Description
This book can be understood as a model for teaching commutative algebra, and takes into account modern developments such as algorithmic and computational aspects. As soon as a new concept is introduced, the authors show how the concept can be worked on using a computer. The computations are exemplified with the computer algebra system Singular, developed by the authors. Singular is a special system for polynomial computation with many features for global as well as for local commutative algebra and algebraic geometry. The book includes a CD containing Singular as well as the examples and procedures explained in the book.