Author: I. N. Herstein
Publisher: John Wiley & Sons
ISBN: 0471010901
Category : Mathematics
Languages : en
Pages : 405
Book Description
New edition includes extensive revisions of the material on finite groups and Galois Theory. New problems added throughout.
Topics in Algebra
Author: I. N. Herstein
Publisher: John Wiley & Sons
ISBN: 0471010901
Category : Mathematics
Languages : en
Pages : 405
Book Description
New edition includes extensive revisions of the material on finite groups and Galois Theory. New problems added throughout.
Publisher: John Wiley & Sons
ISBN: 0471010901
Category : Mathematics
Languages : en
Pages : 405
Book Description
New edition includes extensive revisions of the material on finite groups and Galois Theory. New problems added throughout.
A Book of Abstract Algebra
Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Abstract Algebra
Author: I. N. Herstein
Publisher: Macmillan College
ISBN:
Category : Mathematics
Languages : en
Pages : 322
Book Description
Publisher: Macmillan College
ISBN:
Category : Mathematics
Languages : en
Pages : 322
Book Description
Course On Abstract Algebra, A (Second Edition)
Author: Minking Eie
Publisher: World Scientific Publishing Company
ISBN: 9813229640
Category : Mathematics
Languages : en
Pages : 432
Book Description
This textbook provides an introduction to abstract algebra for advanced undergraduate students. Based on the authors' notes at the Department of Mathematics, National Chung Cheng University, it contains material sufficient for three semesters of study. It begins with a description of the algebraic structures of the ring of integers and the field of rational numbers. Abstract groups are then introduced. Technical results such as Lagrange's theorem and Sylow's theorems follow as applications of group theory. The theory of rings and ideals forms the second part of this textbook, with the ring of integers, the polynomial rings and matrix rings as basic examples. Emphasis will be on factorization in a factorial domain. The final part of the book focuses on field extensions and Galois theory to illustrate the correspondence between Galois groups and splitting fields of separable polynomials.Three whole new chapters are added to this second edition. Group action is introduced to give a more in-depth discussion on Sylow's theorems. We also provide a formula in solving combinatorial problems as an application. We devote two chapters to module theory, which is a natural generalization of the theory of the vector spaces. Readers will see the similarity and subtle differences between the two. In particular, determinant is formally defined and its properties rigorously proved.The textbook is more accessible and less ambitious than most existing books covering the same subject. Readers will also find the pedagogical material very useful in enhancing the teaching and learning of abstract algebra.
Publisher: World Scientific Publishing Company
ISBN: 9813229640
Category : Mathematics
Languages : en
Pages : 432
Book Description
This textbook provides an introduction to abstract algebra for advanced undergraduate students. Based on the authors' notes at the Department of Mathematics, National Chung Cheng University, it contains material sufficient for three semesters of study. It begins with a description of the algebraic structures of the ring of integers and the field of rational numbers. Abstract groups are then introduced. Technical results such as Lagrange's theorem and Sylow's theorems follow as applications of group theory. The theory of rings and ideals forms the second part of this textbook, with the ring of integers, the polynomial rings and matrix rings as basic examples. Emphasis will be on factorization in a factorial domain. The final part of the book focuses on field extensions and Galois theory to illustrate the correspondence between Galois groups and splitting fields of separable polynomials.Three whole new chapters are added to this second edition. Group action is introduced to give a more in-depth discussion on Sylow's theorems. We also provide a formula in solving combinatorial problems as an application. We devote two chapters to module theory, which is a natural generalization of the theory of the vector spaces. Readers will see the similarity and subtle differences between the two. In particular, determinant is formally defined and its properties rigorously proved.The textbook is more accessible and less ambitious than most existing books covering the same subject. Readers will also find the pedagogical material very useful in enhancing the teaching and learning of abstract algebra.
Topics In Abstract Algebra (second Edition)
Author: P. Mukhopadhyay
Publisher: Universities Press
ISBN: 9788173715518
Category :
Languages : en
Pages : 506
Book Description
This book covers the elements of Abstract Algebra, which is a major mathematics course for undergraduate students all over the country and also for first year postgraduate students of many universities. It is designed according to the new UGC syllabus prescribed for all Indian universities.
Publisher: Universities Press
ISBN: 9788173715518
Category :
Languages : en
Pages : 506
Book Description
This book covers the elements of Abstract Algebra, which is a major mathematics course for undergraduate students all over the country and also for first year postgraduate students of many universities. It is designed according to the new UGC syllabus prescribed for all Indian universities.
Undergraduate Algebra
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1475768982
Category : Mathematics
Languages : en
Pages : 380
Book Description
The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group
Publisher: Springer Science & Business Media
ISBN: 1475768982
Category : Mathematics
Languages : en
Pages : 380
Book Description
The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group
College Algebra
Author: Jay Abramson
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892
Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892
Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
How to Think about Abstract Algebra
Author: Lara Alcock
Publisher: Oxford University Press, USA
ISBN: 0198843380
Category : Mathematics
Languages : en
Pages : 307
Book Description
How to Think about Abstract Algebra provides an engaging and readable introduction to its subject, which encompasses group theory and ring theory. Abstract Algebra is central in most undergraduate mathematics degrees, and it captures regularities that appear across diverse mathematical structures - many people find it beautiful for this reason. But its abstraction can make its central ideas hard to grasp, and even the best students might find that they can follow some of the reasoning without really understanding what it is all about. This book aims to solve that problem. It is not like other Abstract Algebra texts and is not a textbook containing standard content. Rather, it is designed to be read before starting an Abstract Algebra course, or as a companion text once a course has begun. It builds up key information on five topics: binary operations, groups, quotient groups, isomorphisms and homomorphisms, and rings. It provides numerous examples, tables and diagrams, and its explanations are informed by research in mathematics education. The book also provides study advice focused on the skills that students need in order to learn successfully in their own Abstract Algebra courses. It explains how to interact productively with axioms, definitions, theorems and proofs, and how research in psychology should inform our beliefs about effective learning.
Publisher: Oxford University Press, USA
ISBN: 0198843380
Category : Mathematics
Languages : en
Pages : 307
Book Description
How to Think about Abstract Algebra provides an engaging and readable introduction to its subject, which encompasses group theory and ring theory. Abstract Algebra is central in most undergraduate mathematics degrees, and it captures regularities that appear across diverse mathematical structures - many people find it beautiful for this reason. But its abstraction can make its central ideas hard to grasp, and even the best students might find that they can follow some of the reasoning without really understanding what it is all about. This book aims to solve that problem. It is not like other Abstract Algebra texts and is not a textbook containing standard content. Rather, it is designed to be read before starting an Abstract Algebra course, or as a companion text once a course has begun. It builds up key information on five topics: binary operations, groups, quotient groups, isomorphisms and homomorphisms, and rings. It provides numerous examples, tables and diagrams, and its explanations are informed by research in mathematics education. The book also provides study advice focused on the skills that students need in order to learn successfully in their own Abstract Algebra courses. It explains how to interact productively with axioms, definitions, theorems and proofs, and how research in psychology should inform our beliefs about effective learning.
Modern Algebra
Author: Seth Warner
Publisher: Courier Corporation
ISBN: 0486137090
Category : Mathematics
Languages : en
Pages : 852
Book Description
Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.
Publisher: Courier Corporation
ISBN: 0486137090
Category : Mathematics
Languages : en
Pages : 852
Book Description
Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.
Certain Number-Theoretic Episodes In Algebra, Second Edition
Author: R Sivaramakrishnan
Publisher: CRC Press
ISBN: 1351023322
Category : Mathematics
Languages : en
Pages : 273
Book Description
The book attempts to point out the interconnections between number theory and algebra with a view to making a student understand certain basic concepts in the two areas forming the subject-matter of the book.
Publisher: CRC Press
ISBN: 1351023322
Category : Mathematics
Languages : en
Pages : 273
Book Description
The book attempts to point out the interconnections between number theory and algebra with a view to making a student understand certain basic concepts in the two areas forming the subject-matter of the book.