Time-Resolved Spectroscopy

Time-Resolved Spectroscopy PDF Author: Thomas Weinacht
Publisher: CRC Press
ISBN: 0429804172
Category : Science
Languages : en
Pages : 454

Get Book Here

Book Description
This concise and carefully developed text offers a reader friendly guide to the basics of time-resolved spectroscopy with an emphasis on experimental implementation. The authors carefully explain and relate for the reader how measurements are connected to the core physical principles. They use the time-dependent wave packet as a building block for understanding quantum dynamics, progressively advancing to more complex topics. The topics are discussed in paired sections, one discussing the theory and the next presenting the related experimental methods. A wide range of readers including students and newcomers to the field will gain a clear and practical understanding of how to measure aspects of molecular dynamics such as wave packet motion, intramolecular vibrational relaxation, and electron-electron coupling, and how to describe such measurements mathematically.

Time-Resolved Spectroscopy

Time-Resolved Spectroscopy PDF Author: Thomas Weinacht
Publisher: CRC Press
ISBN: 0429804172
Category : Science
Languages : en
Pages : 454

Get Book Here

Book Description
This concise and carefully developed text offers a reader friendly guide to the basics of time-resolved spectroscopy with an emphasis on experimental implementation. The authors carefully explain and relate for the reader how measurements are connected to the core physical principles. They use the time-dependent wave packet as a building block for understanding quantum dynamics, progressively advancing to more complex topics. The topics are discussed in paired sections, one discussing the theory and the next presenting the related experimental methods. A wide range of readers including students and newcomers to the field will gain a clear and practical understanding of how to measure aspects of molecular dynamics such as wave packet motion, intramolecular vibrational relaxation, and electron-electron coupling, and how to describe such measurements mathematically.

Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology

Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology PDF Author: R. Cundall
Publisher: Springer Science & Business Media
ISBN: 1475716346
Category : Science
Languages : en
Pages : 767

Get Book Here

Book Description
At the time that the editors conceived the idea of trying to organize the meeting on which the contents of this volume are based and which became, in March 1980, a NATO Advanced Study Institute, the techniques of time-resolved fluorescence spectroscopy, in both the nanosecond and sub-nanosecond time-domains, might reasonably have been said to be coming of age, both in their execution and in the analysis and interpretation of the results obtained. These techniques, then as now, comprised mainly a number of pulse methods using laser, flash-lamp or, most recently, synchrotron radiation. In addition, significant developments in the more classical phase approach had also rendered that method popular, utilizing either modulation of an otherwise continuous source or, again recently, the ultra-rapid pulse rate attainable with a synchrotron source. In general terms, time-resolved fluorescence studies are capable, under appropriate conditions, of supplying direct kinetic information on both photophysics and various aspects of molecular, macromolecular and supramolecular structure and dynamics. The nanosecond and sub-nanosecond time-scales directly probed render these techniques particularly appropriate in studying relaxation and fluctuation processes in macromolecules, particularly biopolymers (e. g. proteins, nucleic acids), in supramolecular assemblies such as cell membranes, and in a variety of relatively simpler model systems.

Resolving Spectral Mixtures

Resolving Spectral Mixtures PDF Author:
Publisher: Elsevier
ISBN: 0444636447
Category : Computers
Languages : en
Pages : 676

Get Book Here

Book Description
Resolving Spectral Mixtures: With Applications from Ultrafast Time-Resolved Spectroscopy to Superresolution Imaging offers a comprehensive look into the most important models and frameworks essential to resolving the spectral unmixing problem—from multivariate curve resolution and multi-way analysis to Bayesian positive source separation and nonlinear unmixing. Unravelling total spectral data into the contributions from individual unknown components with limited prior information is a complex problem that has attracted continuous interest for almost four decades. Spectral unmixing is a topic of interest in statistics, chemometrics, signal processing, and image analysis. For decades, researchers from these fields were often unaware of the work in other disciplines due to their different scientific and technical backgrounds and interest in different objects or samples. This led to the development of quite different approaches to solving the same problem. This multi-authored book will bridge the gap between disciplines with contributions from a number of well-known and strongly active chemometric and signal processing research groups. Among chemists, multivariate curve resolution methods are preferred to extract information about the nature, amount, and location in time (process) and space (imaging and microscopy) of chemical constituents in complex samples. In signal processing, assumptions are usually around statistical independence of the extracted components. However, the chapters include the complexity of the spectral data to be unmixed as well as dimensionality and size of the data sets. Advanced spectroscopy is the key thread linking the different chapters. Applications cover a large part of the electromagnetic spectrum. Time-resolution ranges from femtosecond to second in process spectroscopy and spatial resolution covers the submicronic to macroscopic scale in hyperspectral imaging. Demonstrates how and why data analysis, signal processing, and chemometrics are essential to the spectral unmixing problem Guides the reader through the fundamentals and details of the different methods Presents extensive plots, graphical representations, and illustrations to help readers understand the features of different techniques and to interpret results Bridges the gap between disciplines with contributions from a number of well-known and highly active chemometric and signal processing research groups

Spectroscopy for Materials Characterization

Spectroscopy for Materials Characterization PDF Author: Simonpietro Agnello
Publisher: John Wiley & Sons
ISBN: 1119697328
Category : Technology & Engineering
Languages : en
Pages : 500

Get Book Here

Book Description
SPECTROSCOPY FOR MATERIALS CHARACTERIZATION Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience In Spectroscopy for Materials Characterization, accomplished researcher Simonpietro Agnello delivers a practical and accessible compilation of various spectroscopy techniques taught and used to today. The book offers a wide-ranging approach taught by leading researchers working in physics, chemistry, surface science, and nanoscience. It is ideal for both new students and advanced researchers studying and working with spectroscopy. Topics such as confocal and two photon spectroscopy, as well as infrared absorption and Raman and micro-Raman spectroscopy, are discussed, as are thermally stimulated luminescence and spectroscopic studies of radiation effects on optical materials. Each chapter includes a basic introduction to the theory necessary to understand a specific technique, details about the characteristic instrumental features and apparatuses used, including tips for the appropriate arrangement of a typical experiment, and a reproducible case study that shows the discussed techniques used in a real laboratory. Readers will benefit from the inclusion of: Complete and practical case studies at the conclusion of each chapter to highlight the concepts and techniques discussed in the material Citations of additional resources ideal for further study A thorough introduction to the basic aspects of radiation matter interaction in the visible-ultraviolet range and the fundamentals of absorption and emission A rigorous exploration of time resolved spectroscopy at the nanosecond and femtosecond intervals Perfect for Master and Ph.D. students and researchers in physics, chemistry, engineering, and biology, Spectroscopy for Materials Characterization will also earn a place in the libraries of materials science researchers and students seeking a one-stop reference to basic and advanced spectroscopy techniques.

Laser Ablation and Its Applications

Laser Ablation and Its Applications PDF Author: Claude Phipps
Publisher: Springer Science & Business Media
ISBN: 0387304525
Category : Science
Languages : en
Pages : 598

Get Book Here

Book Description
Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficult. Laser Ablation and its Applications emphasizes the wide range of these topics rather than - as is so often the case in advanced science – focusing on one specialty or discipline. The book is divided into four sections: theory and modeling, ultrafast interactions, material processing and laser-matter interaction in novel regimes. The latter range from MALDI to ICF, SNOM’s and femtosecond nanosurgery to laser space propulsion. The book arose from the SPIE series of High Power Laser Ablation Symposia which began in 1998. It is intended for a graduate course in laser interactions with plasmas and materials, but it should be accessible to anyone with a graduate degree in physics or engineering. It is also intended as a major reference work to familiarize scientists just entering the field with laser ablation and its applications.

Chemical Dynamics in Condensed Phases

Chemical Dynamics in Condensed Phases PDF Author: Abraham Nitzan
Publisher: Oxford University Press
ISBN: 9780198529798
Category : Science
Languages : en
Pages : 743

Get Book Here

Book Description
Graduate level textbook presenting some of the most fundamental processes that underlie physical, chemical and biological phenomena in complex condensed phase systems. Includes in-depth descriptions of relevant methodologies, and provides ample introductory material for readers of different backgrounds.

Spin Resonance Spectroscopy

Spin Resonance Spectroscopy PDF Author: Chandran Karunakaran
Publisher: Elsevier
ISBN: 012813609X
Category : Science
Languages : en
Pages : 380

Get Book Here

Book Description
Spin Resonance Spectroscopy: Principles and Applications presents the principles, recent advancements and applications of nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) in a single multi-disciplinary reference. Spin resonance spectroscopic techniques through NMR and EPR are widely used by chemists, physicists, biologists and medicinal chemists. This book addresses the need for new spin resonance spectroscopy content while also presenting the principles, recent advancements and applications of NMR and EPR simultaneously. Ideal for researchers and students alike, the book provides a single source of NMR and EPR applications using a dynamic, holistic and multi-disciplinary approach. - Presents a highly interdisciplinary approach by including NMR and EPR applications in chemistry, physics, biology and biotechnology - Addresses both NMR and EPR, making its concepts and applications implementable in multiple resonance environments and core scientific disciplines - Features a broad range of methods, examples and illustrations for both NMR and EPR to aid in retention and underscore key concepts

Topics in Fluorescence Spectroscopy

Topics in Fluorescence Spectroscopy PDF Author: Joseph R. Lakowicz
Publisher: Springer Science & Business Media
ISBN: 0306470705
Category : Science
Languages : en
Pages : 555

Get Book Here

Book Description
Fluorescence spectroscopy continues its advance to more sophisticated methods and applications. As one looks over the previous decades, its appears that the first practical instruments for time-resolved measurements appeared in the 1970’s. The instrumentation and analysis methods for time-resolved fluorescence advanced rapidly throughout the 1980’s. Since 1990 we have witnessed a rapid migration of the principles of time-resolved fluorescence to cell biology and clinical appli- tions. Most recently, we have seen the introduction of multi-photon excitation, pump-probe and stimulated emission methods for studies of biological mac- molecules and for cellular imaging. These advanced topics are the subject of the present volume. Two-photon excitation was first predicted by Maria Goppert-Mayer in 1931, but was not experimentally observed until 1961. Observation of two-photon excitation required the introduction of lasers which provided adequate photon density for multi-photon absorption. Since the early observations of two-photon excitation in the 1960s, multi-photon spectroscopy has been limited to somewhat exotic applications of chemical physics, where it is used to study the electronic symmetry of small molecules. Placing one’s self back in 1980, it would be hard to imagine the use of multi-photon excitation in biophysics or cellular imaging.

Ultrafast Infrared Vibrational Spectroscopy

Ultrafast Infrared Vibrational Spectroscopy PDF Author: Michael D. Fayer
Publisher: CRC Press
ISBN: 1466510137
Category : Science
Languages : en
Pages : 491

Get Book Here

Book Description
The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how such interactions evolve on very fast time scales, but also in some instances on very slow time scales. Ultrafast Infrared Vibrational Spectroscopy is an advanced overview of the field of ultrafast infrared vibrational spectroscopy based on the scientific research of the leading figures in the field. The book discusses experimental and theoretical topics reflecting the latest accomplishments and understanding of ultrafast infrared vibrational spectroscopy. Each chapter provides background, details of methods, and explication of a topic of current research interest. Experimental and theoretical studies cover topics as diverse as the dynamics of water and the dynamics and structure of biological molecules. Methods covered include vibrational echo chemical exchange spectroscopy, IR-Raman spectroscopy, time resolved sum frequency generation, and 2D IR spectroscopy. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results. It will serve as an excellent resource for those new to the field, experts in the field, and individuals who want to gain an understanding of particular methods and research topics.

Introduction to Laser Spectroscopy

Introduction to Laser Spectroscopy PDF Author: Halina Abramczyk
Publisher: Elsevier
ISBN: 0080455255
Category : Science
Languages : en
Pages : 331

Get Book Here

Book Description
Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy