Time-independent perturbation theory in quantum mechanics

Time-independent perturbation theory in quantum mechanics PDF Author: Stephen Patrick Walborn
Publisher:
ISBN:
Category :
Languages : en
Pages : 88

Get Book Here

Book Description

Time-independent perturbation theory in quantum mechanics

Time-independent perturbation theory in quantum mechanics PDF Author: Stephen Patrick Walborn
Publisher:
ISBN:
Category :
Languages : en
Pages : 88

Get Book Here

Book Description


Principles of Quantum Mechanics

Principles of Quantum Mechanics PDF Author: R. Shankar
Publisher: Springer Science & Business Media
ISBN: 147570576X
Category : Science
Languages : en
Pages : 676

Get Book Here

Book Description
R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.

Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems PDF Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885

Get Book Here

Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

The Matrix Perturbation Method in Quantum Mechanics

The Matrix Perturbation Method in Quantum Mechanics PDF Author: Francisco Soto-Eguibar
Publisher: Springer Nature
ISBN: 3031485467
Category : Science
Languages : en
Pages : 201

Get Book Here

Book Description
This book provides an alternative approach to time-independent perturbation theory in non-relativistic quantum mechanics. It allows easy application to any initial condition because it is based on an approximation to the evolution operator and may also be used on unitary evolution operators for the unperturbed Hamiltonian in the case where the eigenvalues cannot be found. This flexibility sets it apart from conventional perturbation theory. The matrix perturbation method also gives new theoretical insights; for example, it provides corrections to the energy and wave function in one operation. Another notable highlight is the facility to readily derive a general expression for the normalization constant at m-th order, a significant difference between the approach within and those already in the literature. Another unique aspect of the matrix perturbation method is that it can be extended directly to the Lindblad master equation. The first and second-order corrections are obtained for this equation and the method is generalized for higher orders. An alternative form of the Dyson series, in matrix form instead of integral form, is also obtained. Throughout the book, several benchmark examples and practical applications underscore the potential, accuracy and good performance of this novel approach. Moreover, the method's applicability extends to some specific time-dependent Hamiltonians. This book represents a valuable addition to the literature on perturbation theory in quantum mechanics and is accessible to students and researchers alike.

Introduction to Perturbation Theory in Quantum Mechanics

Introduction to Perturbation Theory in Quantum Mechanics PDF Author: Francisco M. Fernandez
Publisher: CRC Press
ISBN: 1420039644
Category : Science
Languages : en
Pages : 289

Get Book Here

Book Description
Perturbation theory is a powerful tool for solving a wide variety of problems in applied mathematics, a tool particularly useful in quantum mechanics and chemistry. Although most books on these subjects include a section offering an overview of perturbation theory, few, if any, take a practical approach that addresses its actual implementation

Problems in Quantum Mechanics

Problems in Quantum Mechanics PDF Author: Gordon Leslie Squires
Publisher: Cambridge University Press
ISBN: 9780521378505
Category : Science
Languages : en
Pages : 270

Get Book Here

Book Description
Many students find quantum mechanics conceptually difficult when they first encounter the subject. In this book, the postulates and key applications of quantum mechanics are well illustrated by means of a carefully chosen set of problems, complete with detailed, step-by-step solutions. Beginning with a chapter on orders of magnitude, a variety of topics are then covered, including the mathematical foundations of quantum mechanics, Schrödinger's equation, angular momentum, the hydrogen atom, the harmonic oscillator, spin, time-independent and time-dependent perturbation theory, the variational method, multielectron atoms, transitions and scattering. Throughout, the physical interpretation or application of certain results is highlighted, thereby providing useful insights into a wide range of systems and phenomena. This approach will make the book invaluable to anyone taking an undergraduate course in quantum mechanics.

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics PDF Author: David J. Griffiths
Publisher: Cambridge University Press
ISBN: 1108103146
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
Changes and additions to the new edition of this classic textbook include a new chapter on symmetries, new problems and examples, improved explanations, more numerical problems to be worked on a computer, new applications to solid state physics, and consolidated treatment of time-dependent potentials.

Quantum Mechanics

Quantum Mechanics PDF Author: K.T. Hecht
Publisher: Springer Science & Business Media
ISBN: 1461212723
Category : Science
Languages : en
Pages : 768

Get Book Here

Book Description
Intended for beginning graduate students, this text takes the reader from the familiar coordinate representation of quantum mechanics to the modern algebraic approach, emphasizing symmetry principles throughout. After an introduction to the basic postulates and techniques, the book discusses time-independent perturbation theory, angular momentum, identical particles, scatteering theory, and time-dependent perturbation theory. The whole is rounded off with several lectures on relativistic quantum mechanics and on many-body theory.

Quantum Mechanics

Quantum Mechanics PDF Author: Nouredine Zettili
Publisher: John Wiley & Sons
ISBN: 0470026782
Category : Science
Languages : en
Pages : 691

Get Book Here

Book Description
Quantum Mechanics: Concepts and Applications provides a clear, balanced and modern introduction to the subject. Written with the student’s background and ability in mind the book takes an innovative approach to quantum mechanics by combining the essential elements of the theory with the practical applications: it is therefore both a textbook and a problem solving book in one self-contained volume. Carefully structured, the book starts with the experimental basis of quantum mechanics and then discusses its mathematical tools. Subsequent chapters cover the formal foundations of the subject, the exact solutions of the Schrödinger equation for one and three dimensional potentials, time-independent and time-dependent approximation methods, and finally, the theory of scattering. The text is richly illustrated throughout with many worked examples and numerous problems with step-by-step solutions designed to help the reader master the machinery of quantum mechanics. The new edition has been completely updated and a solutions manual is available on request. Suitable for senior undergradutate courses and graduate courses.

Quantum Mechanics

Quantum Mechanics PDF Author: Harish Parthasarathy
Publisher: CRC Press
ISBN: 1000465373
Category : Science
Languages : en
Pages : 226

Get Book Here

Book Description
This book covers the entire span of quantum mechanics whose developments have taken place during the early part of the twentieth century up till the present day. We start with the Rutherford-Bohr model of the atom followed by Schrodinger's wave mechanics with its application to the solution of calculating the energy spectrum of a particle in a box, the harmonic oscillator and finally the hydrogen atom. Heisenberg's matrix mechanics and its duality with Schrodinger's wave mechanics, quantum mechanics in the interaction picture. Dirac's relativistic theory of the electron exhibiting the spin of the electron as a relativistic effect when it interacts with an external electromagnetic field. Feynman's path integral approach to non-relativistic quantum mechanics with is a marvellous intuitive interpretation as a sum over paths and how classical mechanics is obtained from its limit as Planck' constant tends to zero, methods for computing the spectra of the Dirac Hamiltonian in a radial potential, quantum field theory as developed by Feynman, Schwinger, Tomonaga and Dyson for describing the interaction between electrons, positrons, and photons via propagators using both the operator theoretic expansions and Feynman's path integral. We also introduce time independent and time dependent perturbation theory in quantum mechanics with applications to quantum gate design for quantum computers forming a major part of the research conducted by the author's research group, Quantum noise introduced into the Schrodinger and Dirac's equation based on the Hudson-Parthasarathy quantum stochastic calculus in Boson Fock space, scattering theory and wave operators with applications to quantum gate design, some aspects of second quantization like the interpretation of Boson Fock space in terms of harmonic oscillator algebras and the BCS theory of superconductivity, Wigner-Mackey-Frobenius theory of induced representations of a group with applications to Wigner's theory of particle classification, Dirac's equation in a gravitational field and Yang-Mills non-Abelian gauge theories with application to the construction of unified quantum field theories and finally, the more recent theory of super-symmetry which is a Boson-Fermion unification theory. We have discussed the statistics of Boson's, Fermions and Maxwell-Boltzmann based on entropy maximization. The book is written in problem-solution format and it would be of use to physicists and engineers interested respectively in developing unified field theories and in the design of quantum gates. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.