Author: Tomas Björk
Publisher: Springer Nature
ISBN: 3030818438
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book is devoted to problems of stochastic control and stopping that are time inconsistent in the sense that they do not admit a Bellman optimality principle. These problems are cast in a game-theoretic framework, with the focus on subgame-perfect Nash equilibrium strategies. The general theory is illustrated with a number of finance applications. In dynamic choice problems, time inconsistency is the rule rather than the exception. Indeed, as Robert H. Strotz pointed out in his seminal 1955 paper, relaxing the widely used ad hoc assumption of exponential discounting gives rise to time inconsistency. Other famous examples of time inconsistency include mean-variance portfolio choice and prospect theory in a dynamic context. For such models, the very concept of optimality becomes problematic, as the decision maker’s preferences change over time in a temporally inconsistent way. In this book, a time-inconsistent problem is viewed as a non-cooperative game between the agent’s current and future selves, with the objective of finding intrapersonal equilibria in the game-theoretic sense. A range of finance applications are provided, including problems with non-exponential discounting, mean-variance objective, time-inconsistent linear quadratic regulator, probability distortion, and market equilibrium with time-inconsistent preferences. Time-Inconsistent Control Theory with Finance Applications offers the first comprehensive treatment of time-inconsistent control and stopping problems, in both continuous and discrete time, and in the context of finance applications. Intended for researchers and graduate students in the fields of finance and economics, it includes a review of the standard time-consistent results, bibliographical notes, as well as detailed examples showcasing time inconsistency problems. For the reader unacquainted with standard arbitrage theory, an appendix provides a toolbox of material needed for the book.
Time-Inconsistent Control Theory with Finance Applications
Author: Tomas Björk
Publisher: Springer Nature
ISBN: 3030818438
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book is devoted to problems of stochastic control and stopping that are time inconsistent in the sense that they do not admit a Bellman optimality principle. These problems are cast in a game-theoretic framework, with the focus on subgame-perfect Nash equilibrium strategies. The general theory is illustrated with a number of finance applications. In dynamic choice problems, time inconsistency is the rule rather than the exception. Indeed, as Robert H. Strotz pointed out in his seminal 1955 paper, relaxing the widely used ad hoc assumption of exponential discounting gives rise to time inconsistency. Other famous examples of time inconsistency include mean-variance portfolio choice and prospect theory in a dynamic context. For such models, the very concept of optimality becomes problematic, as the decision maker’s preferences change over time in a temporally inconsistent way. In this book, a time-inconsistent problem is viewed as a non-cooperative game between the agent’s current and future selves, with the objective of finding intrapersonal equilibria in the game-theoretic sense. A range of finance applications are provided, including problems with non-exponential discounting, mean-variance objective, time-inconsistent linear quadratic regulator, probability distortion, and market equilibrium with time-inconsistent preferences. Time-Inconsistent Control Theory with Finance Applications offers the first comprehensive treatment of time-inconsistent control and stopping problems, in both continuous and discrete time, and in the context of finance applications. Intended for researchers and graduate students in the fields of finance and economics, it includes a review of the standard time-consistent results, bibliographical notes, as well as detailed examples showcasing time inconsistency problems. For the reader unacquainted with standard arbitrage theory, an appendix provides a toolbox of material needed for the book.
Publisher: Springer Nature
ISBN: 3030818438
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book is devoted to problems of stochastic control and stopping that are time inconsistent in the sense that they do not admit a Bellman optimality principle. These problems are cast in a game-theoretic framework, with the focus on subgame-perfect Nash equilibrium strategies. The general theory is illustrated with a number of finance applications. In dynamic choice problems, time inconsistency is the rule rather than the exception. Indeed, as Robert H. Strotz pointed out in his seminal 1955 paper, relaxing the widely used ad hoc assumption of exponential discounting gives rise to time inconsistency. Other famous examples of time inconsistency include mean-variance portfolio choice and prospect theory in a dynamic context. For such models, the very concept of optimality becomes problematic, as the decision maker’s preferences change over time in a temporally inconsistent way. In this book, a time-inconsistent problem is viewed as a non-cooperative game between the agent’s current and future selves, with the objective of finding intrapersonal equilibria in the game-theoretic sense. A range of finance applications are provided, including problems with non-exponential discounting, mean-variance objective, time-inconsistent linear quadratic regulator, probability distortion, and market equilibrium with time-inconsistent preferences. Time-Inconsistent Control Theory with Finance Applications offers the first comprehensive treatment of time-inconsistent control and stopping problems, in both continuous and discrete time, and in the context of finance applications. Intended for researchers and graduate students in the fields of finance and economics, it includes a review of the standard time-consistent results, bibliographical notes, as well as detailed examples showcasing time inconsistency problems. For the reader unacquainted with standard arbitrage theory, an appendix provides a toolbox of material needed for the book.
Feedback Control Theory
Author: John C. Doyle
Publisher: Courier Corporation
ISBN: 0486318338
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
Publisher: Courier Corporation
ISBN: 0486318338
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
Control and System Theory of Discrete-Time Stochastic Systems
Author: Jan H. van Schuppen
Publisher: Springer Nature
ISBN: 3030669521
Category : Technology & Engineering
Languages : en
Pages : 940
Book Description
This book helps students, researchers, and practicing engineers to understand the theoretical framework of control and system theory for discrete-time stochastic systems so that they can then apply its principles to their own stochastic control systems and to the solution of control, filtering, and realization problems for such systems. Applications of the theory in the book include the control of ships, shock absorbers, traffic and communications networks, and power systems with fluctuating power flows. The focus of the book is a stochastic control system defined for a spectrum of probability distributions including Bernoulli, finite, Poisson, beta, gamma, and Gaussian distributions. The concepts of observability and controllability of a stochastic control system are defined and characterized. Each output process considered is, with respect to conditions, represented by a stochastic system called a stochastic realization. The existence of a control law is related to stochastic controllability while the existence of a filter system is related to stochastic observability. Stochastic control with partial observations is based on the existence of a stochastic realization of the filtration of the observed process.
Publisher: Springer Nature
ISBN: 3030669521
Category : Technology & Engineering
Languages : en
Pages : 940
Book Description
This book helps students, researchers, and practicing engineers to understand the theoretical framework of control and system theory for discrete-time stochastic systems so that they can then apply its principles to their own stochastic control systems and to the solution of control, filtering, and realization problems for such systems. Applications of the theory in the book include the control of ships, shock absorbers, traffic and communications networks, and power systems with fluctuating power flows. The focus of the book is a stochastic control system defined for a spectrum of probability distributions including Bernoulli, finite, Poisson, beta, gamma, and Gaussian distributions. The concepts of observability and controllability of a stochastic control system are defined and characterized. Each output process considered is, with respect to conditions, represented by a stochastic system called a stochastic realization. The existence of a control law is related to stochastic controllability while the existence of a filter system is related to stochastic observability. Stochastic control with partial observations is based on the existence of a stochastic realization of the filtration of the observed process.
Control Theory Tutorial
Author: Steven A. Frank
Publisher: Springer
ISBN: 3319917072
Category : Technology & Engineering
Languages : en
Pages : 112
Book Description
This open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches. Electronic codes for this title can be downloaded from https://extras.springer.com/?query=978-3-319-91707-8
Publisher: Springer
ISBN: 3319917072
Category : Technology & Engineering
Languages : en
Pages : 112
Book Description
This open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches. Electronic codes for this title can be downloaded from https://extras.springer.com/?query=978-3-319-91707-8
Control Strategy for Time-Delay Systems
Author: Mohammad-Hassan Khooban
Publisher: Academic Press
ISBN: 0128205997
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
Control Strategy for Time-Delay Systems Part I: Concepts and Theories covers all the important features of real-world practical applications which will be valuable to practicing engineers and specialists, especially given that delays are present in 99% of industrial processes. The book presents the views of the editors on promising research directions and future industrial applications in this area. Although the fundamentals of time-delay systems are discussed, the book focuses on the advanced modeling and control of such systems and will provide the analysis and test (or simulation) results of nearly every technique described. For this purpose, highly complex models are introduced to ?describe the mentioned new applications, which are characterized by ?time-varying delays with intermittent and stochastic nature, several types of nonlinearities, and the presence ?of different time-scales. Researchers, practitioners, and PhD students will gain insights into the prevailing trends in design and operation of real-time control systems, reviewing the shortcomings and future developments concerning practical system issues, such as standardization, protection, and design. Presents an overview of the most recent trends for time-delay systems Covers the important features of the real-world practical applications that can be valuable to practicing engineers and specialists Provides analysis and simulations results of the techniques described in the book
Publisher: Academic Press
ISBN: 0128205997
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
Control Strategy for Time-Delay Systems Part I: Concepts and Theories covers all the important features of real-world practical applications which will be valuable to practicing engineers and specialists, especially given that delays are present in 99% of industrial processes. The book presents the views of the editors on promising research directions and future industrial applications in this area. Although the fundamentals of time-delay systems are discussed, the book focuses on the advanced modeling and control of such systems and will provide the analysis and test (or simulation) results of nearly every technique described. For this purpose, highly complex models are introduced to ?describe the mentioned new applications, which are characterized by ?time-varying delays with intermittent and stochastic nature, several types of nonlinearities, and the presence ?of different time-scales. Researchers, practitioners, and PhD students will gain insights into the prevailing trends in design and operation of real-time control systems, reviewing the shortcomings and future developments concerning practical system issues, such as standardization, protection, and design. Presents an overview of the most recent trends for time-delay systems Covers the important features of the real-world practical applications that can be valuable to practicing engineers and specialists Provides analysis and simulations results of the techniques described in the book
Discrete-Time Control System Design with Applications
Author: C.A. Rabbath
Publisher: Springer Science & Business Media
ISBN: 1461492904
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
This unique book provides a bridge between digital control theory and vehicle guidance and control practice. It presents practical techniques of digital redesign and direct discrete-time design suitable for a real-time implementation of controllers and guidance laws at multiple rates and with and computational techniques. The theory of digital control is given as theorems, lemmas, and propositions. The design of the digital guidance and control systems is illustrated by means of step-by-step procedures, algorithms, and case studies. The systems proposed are applied to realistic models of unmanned systems and missiles, and digital implementation.
Publisher: Springer Science & Business Media
ISBN: 1461492904
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
This unique book provides a bridge between digital control theory and vehicle guidance and control practice. It presents practical techniques of digital redesign and direct discrete-time design suitable for a real-time implementation of controllers and guidance laws at multiple rates and with and computational techniques. The theory of digital control is given as theorems, lemmas, and propositions. The design of the digital guidance and control systems is illustrated by means of step-by-step procedures, algorithms, and case studies. The systems proposed are applied to realistic models of unmanned systems and missiles, and digital implementation.
Control Theory for Physicists
Author: John Bechhoefer
Publisher: Cambridge University Press
ISBN: 1107001188
Category : Mathematics
Languages : en
Pages : 661
Book Description
Bridging the basics to recent research advances, this is the ideal learning and reference work for physicists studying control theory.
Publisher: Cambridge University Press
ISBN: 1107001188
Category : Mathematics
Languages : en
Pages : 661
Book Description
Bridging the basics to recent research advances, this is the ideal learning and reference work for physicists studying control theory.
Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems
Author: Luis Rodrigues
Publisher: SIAM
ISBN: 1611975905
Category : Mathematics
Languages : en
Pages : 243
Book Description
Engineering systems operate through actuators, most of which will exhibit phenomena such as saturation or zones of no operation, commonly known as dead zones. These are examples of piecewise-affine characteristics, and they can have a considerable impact on the stability and performance of engineering systems. This book targets controller design for piecewise affine systems, fulfilling both stability and performance requirements. The authors present a unified computational methodology for the analysis and synthesis of piecewise affine controllers, taking an approach that is capable of handling sliding modes, sampled-data, and networked systems. They introduce algorithms that will be applicable to nonlinear systems approximated by piecewise affine systems, and they feature several examples from areas such as switching electronic circuits, autonomous vehicles, neural networks, and aerospace applications. Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems is intended for graduate students, advanced senior undergraduate students, and researchers in academia and industry. It is also appropriate for engineers working on applications where switched linear and affine models are important.
Publisher: SIAM
ISBN: 1611975905
Category : Mathematics
Languages : en
Pages : 243
Book Description
Engineering systems operate through actuators, most of which will exhibit phenomena such as saturation or zones of no operation, commonly known as dead zones. These are examples of piecewise-affine characteristics, and they can have a considerable impact on the stability and performance of engineering systems. This book targets controller design for piecewise affine systems, fulfilling both stability and performance requirements. The authors present a unified computational methodology for the analysis and synthesis of piecewise affine controllers, taking an approach that is capable of handling sliding modes, sampled-data, and networked systems. They introduce algorithms that will be applicable to nonlinear systems approximated by piecewise affine systems, and they feature several examples from areas such as switching electronic circuits, autonomous vehicles, neural networks, and aerospace applications. Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems is intended for graduate students, advanced senior undergraduate students, and researchers in academia and industry. It is also appropriate for engineers working on applications where switched linear and affine models are important.
Robust Control of Time-delay Systems
Author: Qing-Chang Zhong
Publisher: Springer Science & Business Media
ISBN: 1846282659
Category : Technology & Engineering
Languages : en
Pages : 243
Book Description
Recently, there have been significant developments in robust control of time-delay systems. This volume presents a systematic treatment of robust control for such systems in the frequency domain. The emphasis is on systems with a single input or output delay, although the delay-free part of the plant can be multi-input-multi-output, in which case the delays in different channels should be the same. The author covers the whole range of H-infinity control of time-delay systems: from controller parameterization implementation; from the Nehari problem to the four-block problem; from theoretical developments to practical issues. The major tools used are similarity transformation, the chain-scattering approach and J-spectral factorization. Self-contained, "Robust Control of Time-delay Systems" will interest control theorists and mathematicians working with time-delay systems. Its methodical approach will be of value to graduates studying general robust control theory or its applications in time-delay systems.
Publisher: Springer Science & Business Media
ISBN: 1846282659
Category : Technology & Engineering
Languages : en
Pages : 243
Book Description
Recently, there have been significant developments in robust control of time-delay systems. This volume presents a systematic treatment of robust control for such systems in the frequency domain. The emphasis is on systems with a single input or output delay, although the delay-free part of the plant can be multi-input-multi-output, in which case the delays in different channels should be the same. The author covers the whole range of H-infinity control of time-delay systems: from controller parameterization implementation; from the Nehari problem to the four-block problem; from theoretical developments to practical issues. The major tools used are similarity transformation, the chain-scattering approach and J-spectral factorization. Self-contained, "Robust Control of Time-delay Systems" will interest control theorists and mathematicians working with time-delay systems. Its methodical approach will be of value to graduates studying general robust control theory or its applications in time-delay systems.
Stochastic Control Theory
Author: Makiko Nisio
Publisher: Springer
ISBN: 4431551239
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.
Publisher: Springer
ISBN: 4431551239
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.