Author: Michael Matthews
Publisher: Springer Science & Business Media
ISBN: 9401139946
Category : Education
Languages : en
Pages : 459
Book Description
The book's argument depends, as do most proposals in education, upon cer tain positions in the philosophy of education. I believe that education should be primarily concerned with developing understanding, with initiation into worth while traditions of intellectual achievement, and with developing capacities for clear, analytic and critical thought. These have been the long-accepted goals of liberal education. In a liberal education, students should come to know and appre ciate a variety of disciplines, know them at an appropriate depth, see the interconnectedness of the disciplines, or the modes of thought, and finally have some critical disposition toward what is being learned, to be genuinely open minded about intellectual things. These liberal goals are contrasted with goals such as professional training, job preparation, promotion of self-esteem, social engineering, entertainment, or countless other putative purposes of schooling that are enunciated by politicians, administrators, and educators. The book's argument might be consistent with other views of education especially ones about the training of specialists (sometimes called a professional view of education)-but the argument fits best with a liberal view of education. The liberal hope has always been that if education is done well, then other per sonal and social goods will follow. The development of informed, critical, and moral capacities is the cornerstone for personal and social achievements.
Time for Science Education
Author: Michael Matthews
Publisher: Springer Science & Business Media
ISBN: 9401139946
Category : Education
Languages : en
Pages : 459
Book Description
The book's argument depends, as do most proposals in education, upon cer tain positions in the philosophy of education. I believe that education should be primarily concerned with developing understanding, with initiation into worth while traditions of intellectual achievement, and with developing capacities for clear, analytic and critical thought. These have been the long-accepted goals of liberal education. In a liberal education, students should come to know and appre ciate a variety of disciplines, know them at an appropriate depth, see the interconnectedness of the disciplines, or the modes of thought, and finally have some critical disposition toward what is being learned, to be genuinely open minded about intellectual things. These liberal goals are contrasted with goals such as professional training, job preparation, promotion of self-esteem, social engineering, entertainment, or countless other putative purposes of schooling that are enunciated by politicians, administrators, and educators. The book's argument might be consistent with other views of education especially ones about the training of specialists (sometimes called a professional view of education)-but the argument fits best with a liberal view of education. The liberal hope has always been that if education is done well, then other per sonal and social goods will follow. The development of informed, critical, and moral capacities is the cornerstone for personal and social achievements.
Publisher: Springer Science & Business Media
ISBN: 9401139946
Category : Education
Languages : en
Pages : 459
Book Description
The book's argument depends, as do most proposals in education, upon cer tain positions in the philosophy of education. I believe that education should be primarily concerned with developing understanding, with initiation into worth while traditions of intellectual achievement, and with developing capacities for clear, analytic and critical thought. These have been the long-accepted goals of liberal education. In a liberal education, students should come to know and appre ciate a variety of disciplines, know them at an appropriate depth, see the interconnectedness of the disciplines, or the modes of thought, and finally have some critical disposition toward what is being learned, to be genuinely open minded about intellectual things. These liberal goals are contrasted with goals such as professional training, job preparation, promotion of self-esteem, social engineering, entertainment, or countless other putative purposes of schooling that are enunciated by politicians, administrators, and educators. The book's argument might be consistent with other views of education especially ones about the training of specialists (sometimes called a professional view of education)-but the argument fits best with a liberal view of education. The liberal hope has always been that if education is done well, then other per sonal and social goods will follow. The development of informed, critical, and moral capacities is the cornerstone for personal and social achievements.
Internet Links for Science Education
Author: Karen C. Cohen
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 286
Book Description
A stellar roster of authors explores the role of the Internet is a vital new form of science instruction, authentic Student-Scientist Partnerships. Numerous successful SSPs are detailed in this key resource for scientists, educators, students, administrators, parents, and community leaders interested in nurturing and implementing positive educational change and improvement.
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 286
Book Description
A stellar roster of authors explores the role of the Internet is a vital new form of science instruction, authentic Student-Scientist Partnerships. Numerous successful SSPs are detailed in this key resource for scientists, educators, students, administrators, parents, and community leaders interested in nurturing and implementing positive educational change and improvement.
Internet Environments for Science Education
Author: Marcia C. Linn
Publisher: Routledge
ISBN: 1135631832
Category : Education
Languages : en
Pages : 398
Book Description
Internet Environments for Science Education synthesizes 25 years of research to identify effective, technology-enhanced ways to convert students into lifelong science learners--one inquiry project at a time. It offers design principles for development of innovations; features tested, customizable inquiry projects that students, teachers, and professional developers can enact and refine; and introduces new methods and assessments to investigate the impact of technology on inquiry learning. The methodology--design-based research studies--enables investigators to capture the impact of innovations in the complex, inertia-laden educational enterprise and to use these findings to improve the innovation. The approach--technology-enhanced inquiry--takes advantage of global, networked information resources, sociocognitive research, and advances in technology combined in responsive learning environments. Internet Environments for Science Education advocates leveraging inquiry and technology to reform the full spectrum of science education activities--including instruction, curriculum, policy, professional development, and assessment. The book offers: *the knowledge integration perspective on learning, featuring the interpretive, cultural, and deliberate natures of the learner; *the scaffolded knowledge integration framework on instruction summarized in meta-principles and pragmatic principles for design of inquiry instruction; *a series of learning environments, including the Computer as Learning Partner (CLP), the Knowledge Integration Environment (KIE), and the Web-based Inquiry Science Environment (WISE) that designers can use to create new inquiry projects, customize existing projects, or inspire thinking about other learning environments; *curriculum design patterns for inquiry projects describing activity sequences to promote critique, debate, design, and investigation in science; *a partnership model establishing activity structures for teachers, pedagogical researchers, discipline experts, and technologists to jointly design and refine inquiry instruction; *a professional development model involving mentoring by an expert teacher; *projects about contemporary controversy enabling students to explore the nature of science; *a customization process guiding teachers to adapt inquiry projects to their own students, geographical characteristics, curriculum framework, and personal goals; and *a Web site providing additional links, resources, and community tools at www.InternetScienceEducation.org
Publisher: Routledge
ISBN: 1135631832
Category : Education
Languages : en
Pages : 398
Book Description
Internet Environments for Science Education synthesizes 25 years of research to identify effective, technology-enhanced ways to convert students into lifelong science learners--one inquiry project at a time. It offers design principles for development of innovations; features tested, customizable inquiry projects that students, teachers, and professional developers can enact and refine; and introduces new methods and assessments to investigate the impact of technology on inquiry learning. The methodology--design-based research studies--enables investigators to capture the impact of innovations in the complex, inertia-laden educational enterprise and to use these findings to improve the innovation. The approach--technology-enhanced inquiry--takes advantage of global, networked information resources, sociocognitive research, and advances in technology combined in responsive learning environments. Internet Environments for Science Education advocates leveraging inquiry and technology to reform the full spectrum of science education activities--including instruction, curriculum, policy, professional development, and assessment. The book offers: *the knowledge integration perspective on learning, featuring the interpretive, cultural, and deliberate natures of the learner; *the scaffolded knowledge integration framework on instruction summarized in meta-principles and pragmatic principles for design of inquiry instruction; *a series of learning environments, including the Computer as Learning Partner (CLP), the Knowledge Integration Environment (KIE), and the Web-based Inquiry Science Environment (WISE) that designers can use to create new inquiry projects, customize existing projects, or inspire thinking about other learning environments; *curriculum design patterns for inquiry projects describing activity sequences to promote critique, debate, design, and investigation in science; *a partnership model establishing activity structures for teachers, pedagogical researchers, discipline experts, and technologists to jointly design and refine inquiry instruction; *a professional development model involving mentoring by an expert teacher; *projects about contemporary controversy enabling students to explore the nature of science; *a customization process guiding teachers to adapt inquiry projects to their own students, geographical characteristics, curriculum framework, and personal goals; and *a Web site providing additional links, resources, and community tools at www.InternetScienceEducation.org
A Framework for K-12 Science Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Improving How Universities Teach Science
Author: Carl Wieman
Publisher: Harvard University Press
ISBN: 0674978927
Category : Science
Languages : en
Pages : 179
Book Description
Too many universities remain wedded to outmoded ways of teaching science in spite of extensive research showing that there are much more effective methods. Too few departments ask whether what happens in their lecture halls is effective at helping students to learn and how they can encourage their faculty to teach better. But real change is possible, and Carl Wieman shows us how it can be brought about. Improving How Universities Teach Science draws on Wieman’s unparalleled experience to provide a blueprint for educators seeking sustainable improvements in science teaching. Wieman created the Science Education Initiative (SEI), a program implemented across thirteen science departments at the universities of Colorado and British Columbia, to support the widespread adoption of the best research-based approaches to science teaching. The program’s data show that in the most successful departments 90 percent of faculty adopted better methods. Wieman identifies what factors helped and hindered the adoption of good teaching methods. He also gives detailed, effective, and tested strategies for departments and institutions to measure and improve the quality of their teaching while limiting the demands on faculty time. Among all of the commentary addressing shortcomings in higher education, Wieman’s lessons on improving teaching and learning stand out. His analysis and solutions are not limited to just one lecture hall or course but deal with changing entire departments and universities. For those who want to improve how universities teach science to the next generation, Wieman’s work is a critical first step.
Publisher: Harvard University Press
ISBN: 0674978927
Category : Science
Languages : en
Pages : 179
Book Description
Too many universities remain wedded to outmoded ways of teaching science in spite of extensive research showing that there are much more effective methods. Too few departments ask whether what happens in their lecture halls is effective at helping students to learn and how they can encourage their faculty to teach better. But real change is possible, and Carl Wieman shows us how it can be brought about. Improving How Universities Teach Science draws on Wieman’s unparalleled experience to provide a blueprint for educators seeking sustainable improvements in science teaching. Wieman created the Science Education Initiative (SEI), a program implemented across thirteen science departments at the universities of Colorado and British Columbia, to support the widespread adoption of the best research-based approaches to science teaching. The program’s data show that in the most successful departments 90 percent of faculty adopted better methods. Wieman identifies what factors helped and hindered the adoption of good teaching methods. He also gives detailed, effective, and tested strategies for departments and institutions to measure and improve the quality of their teaching while limiting the demands on faculty time. Among all of the commentary addressing shortcomings in higher education, Wieman’s lessons on improving teaching and learning stand out. His analysis and solutions are not limited to just one lecture hall or course but deal with changing entire departments and universities. For those who want to improve how universities teach science to the next generation, Wieman’s work is a critical first step.
From Wonder to Mastery
Author: John Mays
Publisher: Centripetal Press
ISBN: 9780998983325
Category :
Languages : en
Pages :
Book Description
Publisher: Centripetal Press
ISBN: 9780998983325
Category :
Languages : en
Pages :
Book Description
Improvement Science in Education
Author: Brandi Nicole Hinnant-Crawford
Publisher: Myers Education Press
ISBN: 1975503570
Category : Education
Languages : en
Pages : 293
Book Description
Improvement Science in Education: A Primer provides a comprehensive overview of improvement science as a framework to guide continuous improvement and reconceptualizes improvement by centering equity and justice as the purpose of improvement. This Primer is designed to introduce improvement science, a methodology with origins in manufacturing, engineering and healthcare, to educational audiences. The book first explores the philosophical and methodological foundations of improvement science, juxtaposing it with traditional forms of research so that clear distinctions can be drawn. Chapters in the latter half of the book introduce the principles of improvement, give guidance and tools for operationalizing the principles in practice, and conclude with questions to ensure you are improving with equity in mind. Constantly reminding readers to think about who is involved and impacted, the Primer makes improvement science accessible to novices and adds critical dimensions for experienced practitioners to consider. Perfect for courses such as: Educational Research, School Improvement, and Program Evaluation
Publisher: Myers Education Press
ISBN: 1975503570
Category : Education
Languages : en
Pages : 293
Book Description
Improvement Science in Education: A Primer provides a comprehensive overview of improvement science as a framework to guide continuous improvement and reconceptualizes improvement by centering equity and justice as the purpose of improvement. This Primer is designed to introduce improvement science, a methodology with origins in manufacturing, engineering and healthcare, to educational audiences. The book first explores the philosophical and methodological foundations of improvement science, juxtaposing it with traditional forms of research so that clear distinctions can be drawn. Chapters in the latter half of the book introduce the principles of improvement, give guidance and tools for operationalizing the principles in practice, and conclude with questions to ensure you are improving with equity in mind. Constantly reminding readers to think about who is involved and impacted, the Primer makes improvement science accessible to novices and adds critical dimensions for experienced practitioners to consider. Perfect for courses such as: Educational Research, School Improvement, and Program Evaluation
A History of Ideas in Science Education
Author: George DeBoer
Publisher: Teachers College Press
ISBN: 0807778095
Category : Education
Languages : en
Pages : 389
Book Description
By allowing key scientists, researchers, professors, and classroom teachers of science to speak for themselves through their published writings about what is best and needed for the field, Dr. DeBoer presents a fascinating account of the history of science education in the United States from the middle of the 19th century to the present. The book relates how science first struggled to find a place in the school curriculum and recounts the many debates over the years about what that curriculum should be. In fact, many of what we consider modern ideas in science education are not new at all but can be traced to writings on education of one hundred years ago. The book is aimed at all those interested in science education: classroom teachers and science education leaders concerned about the historical justification of the goals and strategies proposed for the field. The book should be enjoyed not only by the researcher but also by anyone curious about just how curriculum is decided upon and implemented on a national scale. “This is without question the finest book of its kind on the market. It deserves to be widely read by current and future science teachers, supervisors, science education faculty in colleges and universities, curriculum developers, and program officers in funding agencies.” —The Science Teacher “Adds a significant dimension to the history of American schooling and curriculum.” —History of Education Quarterly
Publisher: Teachers College Press
ISBN: 0807778095
Category : Education
Languages : en
Pages : 389
Book Description
By allowing key scientists, researchers, professors, and classroom teachers of science to speak for themselves through their published writings about what is best and needed for the field, Dr. DeBoer presents a fascinating account of the history of science education in the United States from the middle of the 19th century to the present. The book relates how science first struggled to find a place in the school curriculum and recounts the many debates over the years about what that curriculum should be. In fact, many of what we consider modern ideas in science education are not new at all but can be traced to writings on education of one hundred years ago. The book is aimed at all those interested in science education: classroom teachers and science education leaders concerned about the historical justification of the goals and strategies proposed for the field. The book should be enjoyed not only by the researcher but also by anyone curious about just how curriculum is decided upon and implemented on a national scale. “This is without question the finest book of its kind on the market. It deserves to be widely read by current and future science teachers, supervisors, science education faculty in colleges and universities, curriculum developers, and program officers in funding agencies.” —The Science Teacher “Adds a significant dimension to the history of American schooling and curriculum.” —History of Education Quarterly
A Vision for Science Education
Author: Roger Cross
Publisher: Routledge
ISBN: 1134441592
Category : Education
Languages : en
Pages : 246
Book Description
One of the most important and consistent voices in the reform of science education over the last thirty years has been that of Peter Fensham. His vision of a democratic and socially responsible science education for all has inspired change in schools and colleges throughout the world. Often moving against the tide, Fensham travelled the world to promote his radical ideology. He was appointed Australia's first Professor of Science Education, and was later made a Member of the Order of Australia in recognition of his work in this new and emerging field of study. In this unique book, leading science educators from around the world examine and discuss Fensham's key ideas. Each describes how his arguments, proposals and recommendations have affected their own practice, and extend and modify his message in light of current issues and trends in science education. The result is a vision for the future of science teaching internationally. Academics, researchers and practitioners in science education around the world will find this book a fascinating insight into the life and work of one of the foremost pioneers in science education. The book will also make inspiring reading for postgraduate students of science education.
Publisher: Routledge
ISBN: 1134441592
Category : Education
Languages : en
Pages : 246
Book Description
One of the most important and consistent voices in the reform of science education over the last thirty years has been that of Peter Fensham. His vision of a democratic and socially responsible science education for all has inspired change in schools and colleges throughout the world. Often moving against the tide, Fensham travelled the world to promote his radical ideology. He was appointed Australia's first Professor of Science Education, and was later made a Member of the Order of Australia in recognition of his work in this new and emerging field of study. In this unique book, leading science educators from around the world examine and discuss Fensham's key ideas. Each describes how his arguments, proposals and recommendations have affected their own practice, and extend and modify his message in light of current issues and trends in science education. The result is a vision for the future of science teaching internationally. Academics, researchers and practitioners in science education around the world will find this book a fascinating insight into the life and work of one of the foremost pioneers in science education. The book will also make inspiring reading for postgraduate students of science education.
National Science Education Standards
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309053269
Category : Education
Languages : en
Pages : 272
Book Description
Americans agree that our students urgently need better science education. But what should they be expected to know and be able to do? Can the same expectations be applied across our diverse society? These and other fundamental issues are addressed in National Science Education Standardsâ€"a landmark development effort that reflects the contributions of thousands of teachers, scientists, science educators, and other experts across the country. The National Science Education Standards offer a coherent vision of what it means to be scientifically literate, describing what all students regardless of background or circumstance should understand and be able to do at different grade levels in various science categories. The standards address: The exemplary practice of science teaching that provides students with experiences that enable them to achieve scientific literacy. Criteria for assessing and analyzing students' attainments in science and the learning opportunities that school science programs afford. The nature and design of the school and district science program. The support and resources needed for students to learn science. These standards reflect the principles that learning science is an inquiry-based process, that science in schools should reflect the intellectual traditions of contemporary science, and that all Americans have a role in improving science education. This document will be invaluable to education policymakers, school system administrators, teacher educators, individual teachers, and concerned parents.
Publisher: National Academies Press
ISBN: 0309053269
Category : Education
Languages : en
Pages : 272
Book Description
Americans agree that our students urgently need better science education. But what should they be expected to know and be able to do? Can the same expectations be applied across our diverse society? These and other fundamental issues are addressed in National Science Education Standardsâ€"a landmark development effort that reflects the contributions of thousands of teachers, scientists, science educators, and other experts across the country. The National Science Education Standards offer a coherent vision of what it means to be scientifically literate, describing what all students regardless of background or circumstance should understand and be able to do at different grade levels in various science categories. The standards address: The exemplary practice of science teaching that provides students with experiences that enable them to achieve scientific literacy. Criteria for assessing and analyzing students' attainments in science and the learning opportunities that school science programs afford. The nature and design of the school and district science program. The support and resources needed for students to learn science. These standards reflect the principles that learning science is an inquiry-based process, that science in schools should reflect the intellectual traditions of contemporary science, and that all Americans have a role in improving science education. This document will be invaluable to education policymakers, school system administrators, teacher educators, individual teachers, and concerned parents.