Essays in Honor of Cheng Hsiao

Essays in Honor of Cheng Hsiao PDF Author: Dek Terrell
Publisher: Emerald Group Publishing
ISBN: 1789739578
Category : Business & Economics
Languages : en
Pages : 468

Get Book Here

Book Description
Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometrics is published in honour of Cheng Hsiao.

Nonparametric Regression Methods for Longitudinal Data Analysis

Nonparametric Regression Methods for Longitudinal Data Analysis PDF Author: Hulin Wu
Publisher: John Wiley & Sons
ISBN: 0470009667
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.

Essays in Honor of Cheng Hsiao

Essays in Honor of Cheng Hsiao PDF Author: Dek Terrell
Publisher: Emerald Group Publishing
ISBN: 1789739578
Category : Business & Economics
Languages : en
Pages : 468

Get Book Here

Book Description
Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometrics is published in honour of Cheng Hsiao.

Applied Longitudinal Analysis

Applied Longitudinal Analysis PDF Author: Garrett M. Fitzmaurice
Publisher: John Wiley & Sons
ISBN: 1118551796
Category : Mathematics
Languages : en
Pages : 758

Get Book Here

Book Description
Praise for the First Edition ". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis." —Journal of the American Statistical Association Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences. The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The Second Edition features six newly added chapters that explore topics currently evolving in the field, including: Fixed effects and mixed effects models Marginal models and generalized estimating equations Approximate methods for generalized linear mixed effects models Multiple imputation and inverse probability weighted methods Smoothing methods for longitudinal data Sample size and power Each chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS, Stata, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material. With its strong emphasis on multidisciplinary applications and the interpretation of results, Applied Longitudinal Analysis, Second Edition is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.

Nonparametric Statistics with Applications to Science and Engineering

Nonparametric Statistics with Applications to Science and Engineering PDF Author: Paul H. Kvam
Publisher: John Wiley & Sons
ISBN: 9780470168691
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.

Time Series

Time Series PDF Author: Ngai Hang Chan
Publisher: John Wiley & Sons
ISBN: 0471461644
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
Elements of Financial Time Series fills a gap in the market in the area of financial time series analysis by giving both conceptual and practical illustrations. Examples and discussions in the later chapters of the book make recent developments in time series more accessible. Examples from finance are maximized as much as possible throughout the book. * Full set of exercises is displayed at the end of each chapter. * First seven chapters cover standard topics in time series at a high-intensity level. * Recent and timely developments in nonstandard time series techniques are illustrated with real finance examples in detail. * Examples are systemically illustrated with S-plus with codes and data available on an associated Web site.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives PDF Author: Andrew Gelman
Publisher: John Wiley & Sons
ISBN: 9780470090435
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.

Sampling

Sampling PDF Author: Steven K. Thompson
Publisher: John Wiley & Sons
ISBN: 1118162943
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treatment of both classical and modern sampling design and estimation methods, along with sampling methods for rare, clustered, and hard-to-detect populations. This Third Edition retains the general organization of the two previous editions, but incorporates extensive new material—sections, exercises, and examples—throughout. Inside, readers will find all-new approaches to explain the various techniques in the book; new figures to assist in better visualizing and comprehending underlying concepts such as the different sampling strategies; computing notes for sample selection, calculation of estimates, and simulations; and more. Organized into six sections, the book covers basic sampling, from simple random to unequal probability sampling; the use of auxiliary data with ratio and regression estimation; sufficient data, model, and design in practical sampling; useful designs such as stratified, cluster and systematic, multistage, double and network sampling; detectability methods for elusive populations; spatial sampling; and adaptive sampling designs. Featuring a broad range of topics, Sampling, Third Edition serves as a valuable reference on useful sampling and estimation methods for researchers in various fields of study, including biostatistics, ecology, and the health sciences. The book is also ideal for courses on statistical sampling at the upper-undergraduate and graduate levels.

Analysis of Financial Time Series

Analysis of Financial Time Series PDF Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 0471746185
Category : Business & Economics
Languages : en
Pages : 576

Get Book Here

Book Description
Provides statistical tools and techniques needed to understandtoday's financial markets The Second Edition of this critically acclaimed text provides acomprehensive and systematic introduction to financial econometricmodels and their applications in modeling and predicting financialtime series data. This latest edition continues to emphasizeempirical financial data and focuses on real-world examples.Following this approach, readers will master key aspects offinancial time series, including volatility modeling, neuralnetwork applications, market microstructure and high-frequencyfinancial data, continuous-time models and Ito's Lemma, Value atRisk, multiple returns analysis, financial factor models, andeconometric modeling via computation-intensive methods. The author begins with the basic characteristics of financialtime series data, setting the foundation for the three maintopics: Analysis and application of univariate financial timeseries Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text,including the addition of S-Plus® commands and illustrations.Exercises have been thoroughly updated and expanded and include themost current data, providing readers with more opportunities to putthe models and methods into practice. Among the new material addedto the text, readers will find: Consistent covariance estimation under heteroscedasticity andserial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing adeeper understanding of financial markets through firsthandexperience in working with financial data. This is an idealtextbook for MBA students as well as a reference for researchersand professionals in business and finance.

Financial Derivatives in Theory and Practice

Financial Derivatives in Theory and Practice PDF Author: Philip Hunt
Publisher: John Wiley and Sons
ISBN: 9780470863589
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
The term Financial Derivative is a very broad term which has come to mean any financial transaction whose value depends on the underlying value of the asset concerned. Sophisticated statistical modelling of derivatives enables practitioners in the banking industry to reduce financial risk and ultimately increase profits made from these transactions. The book originally published in March 2000 to widespread acclaim. This revised edition has been updated with minor corrections and new references, and now includes a chapter of exercises and solutions, enabling use as a course text. Comprehensive introduction to the theory and practice of financial derivatives. Discusses and elaborates on the theory of interest rate derivatives, an area of increasing interest. Divided into two self-contained parts ? the first concentrating on the theory of stochastic calculus, and the second describes in detail the pricing of a number of different derivatives in practice. Written by well respected academics with experience in the banking industry. A valuable text for practitioners in research departments of all banking and finance sectors. Academic researchers and graduate students working in mathematical finance.

Generalized Inference in Repeated Measures

Generalized Inference in Repeated Measures PDF Author: Samaradasa Weerahandi
Publisher: John Wiley & Sons
ISBN: 9780471470175
Category : Mathematics
Languages : en
Pages : 382

Get Book Here

Book Description
A complete guide to powerful and practical statistical modeling using MANOVA Numerous statistical applications are time dependent. Virtually all biomedical, pharmaceutical, and industrial experiments demand repeated measurements over time. The same holds true for market research and analysis. Yet conventional methods, such as the Repeated Measures Analysis of Variance (Rm ANOVA), do not always yield exact solutions, obliging practitioners to settle for asymptotic results and approximate solutions. Generalized inference in Multivariate Analysis of Variance (MANOVA), mixed models, and growth curves offer exact methods of data analysis under milder conditions without deviating from the conventional philosophy of statistical inference. Generalized Inference in Repeated Measures is a concise, self-contained guide to the use of these innovative solutions, presenting them as extensions of–rather than alternatives to–classical methods of statistical evaluation. Requiring minimal prior knowledge of statistical concepts in the evaluation of linear models, the book provides exact parametric methods for each application considered, with solutions presented in terms of generalized p-values. Coverage includes: New concepts in statistical inference, with special focus on generalized p-values and generalized confidence intervals One-way and two-way ANOVA, in cases of equal and unequal variances Basic and higher-way mixed models, including testing and estimation of fixed effects and variance components Multivariate populations, including basic inference, comparison, and analysis of variance Basic, widely used repeated measures models including crossover designs and growth curves With a comprehensive set of formulas, illustrative examples, and exercises in each chapter, Generalized Inference in Repeated Measures is ideal as both a comprehensive reference for research professionals and a text for students.