Author: Niels Haldrup
Publisher: OUP Oxford
ISBN: 0191669547
Category : Business & Economics
Languages : en
Pages : 393
Book Description
This edited collection concerns nonlinear economic relations that involve time. It is divided into four broad themes that all reflect the work and methodology of Professor Timo Teräsvirta, one of the leading scholars in the field of nonlinear time series econometrics. The themes are: Testing for linearity and functional form, specification testing and estimation of nonlinear time series models in the form of smooth transition models, model selection and econometric methodology, and finally applications within the area of financial econometrics. All these research fields include contributions that represent state of the art in econometrics such as testing for neglected nonlinearity in neural network models, time-varying GARCH and smooth transition models, STAR models and common factors in volatility modeling, semi-automatic general to specific model selection for nonlinear dynamic models, high-dimensional data analysis for parametric and semi-parametric regression models with dependent data, commodity price modeling, financial analysts earnings forecasts based on asymmetric loss function, local Gaussian correlation and dependence for asymmetric return dependence, and the use of bootstrap aggregation to improve forecast accuracy. Each chapter represents original scholarly work, and reflects the intellectual impact that Timo Teräsvirta has had and will continue to have, on the profession.
Three Essays on Nonlinear Time Series
Author: Jin-Lung Lin
Publisher:
ISBN:
Category : Econometric models
Languages : en
Pages : 86
Book Description
Publisher:
ISBN:
Category : Econometric models
Languages : en
Pages : 86
Book Description
Essays in Nonlinear Time Series Econometrics
Author: Niels Haldrup
Publisher: OUP Oxford
ISBN: 0191669547
Category : Business & Economics
Languages : en
Pages : 393
Book Description
This edited collection concerns nonlinear economic relations that involve time. It is divided into four broad themes that all reflect the work and methodology of Professor Timo Teräsvirta, one of the leading scholars in the field of nonlinear time series econometrics. The themes are: Testing for linearity and functional form, specification testing and estimation of nonlinear time series models in the form of smooth transition models, model selection and econometric methodology, and finally applications within the area of financial econometrics. All these research fields include contributions that represent state of the art in econometrics such as testing for neglected nonlinearity in neural network models, time-varying GARCH and smooth transition models, STAR models and common factors in volatility modeling, semi-automatic general to specific model selection for nonlinear dynamic models, high-dimensional data analysis for parametric and semi-parametric regression models with dependent data, commodity price modeling, financial analysts earnings forecasts based on asymmetric loss function, local Gaussian correlation and dependence for asymmetric return dependence, and the use of bootstrap aggregation to improve forecast accuracy. Each chapter represents original scholarly work, and reflects the intellectual impact that Timo Teräsvirta has had and will continue to have, on the profession.
Publisher: OUP Oxford
ISBN: 0191669547
Category : Business & Economics
Languages : en
Pages : 393
Book Description
This edited collection concerns nonlinear economic relations that involve time. It is divided into four broad themes that all reflect the work and methodology of Professor Timo Teräsvirta, one of the leading scholars in the field of nonlinear time series econometrics. The themes are: Testing for linearity and functional form, specification testing and estimation of nonlinear time series models in the form of smooth transition models, model selection and econometric methodology, and finally applications within the area of financial econometrics. All these research fields include contributions that represent state of the art in econometrics such as testing for neglected nonlinearity in neural network models, time-varying GARCH and smooth transition models, STAR models and common factors in volatility modeling, semi-automatic general to specific model selection for nonlinear dynamic models, high-dimensional data analysis for parametric and semi-parametric regression models with dependent data, commodity price modeling, financial analysts earnings forecasts based on asymmetric loss function, local Gaussian correlation and dependence for asymmetric return dependence, and the use of bootstrap aggregation to improve forecast accuracy. Each chapter represents original scholarly work, and reflects the intellectual impact that Timo Teräsvirta has had and will continue to have, on the profession.
Three Essays on Non-linear Time Series
Author: Chor-Yiu Sin
Publisher:
ISBN:
Category : Nonlinear theories
Languages : en
Pages : 292
Book Description
Publisher:
ISBN:
Category : Nonlinear theories
Languages : en
Pages : 292
Book Description
Elements of Nonlinear Time Series Analysis and Forecasting
Author: Jan G. De Gooijer
Publisher: Springer
ISBN: 3319432524
Category : Mathematics
Languages : en
Pages : 626
Book Description
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Publisher: Springer
ISBN: 3319432524
Category : Mathematics
Languages : en
Pages : 626
Book Description
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Essays in Honor of Joon Y. Park
Author: Yoosoon Chang
Publisher: Emerald Group Publishing
ISBN: 1837532141
Category : Business & Economics
Languages : en
Pages : 382
Book Description
Volumes 45a and 45b of Advances in Econometrics honor Professor Joon Y. Park, who has made numerous and substantive contributions to the field of econometrics over a career spanning four decades since the 1980s and counting.
Publisher: Emerald Group Publishing
ISBN: 1837532141
Category : Business & Economics
Languages : en
Pages : 382
Book Description
Volumes 45a and 45b of Advances in Econometrics honor Professor Joon Y. Park, who has made numerous and substantive contributions to the field of econometrics over a career spanning four decades since the 1980s and counting.
Essays in Econometrics
Author: Clive W. J. Granger
Publisher: Cambridge University Press
ISBN: 9780521796491
Category : Business & Economics
Languages : en
Pages : 400
Book Description
These are econometrician Clive W. J. Granger's major essays in causality, integration, cointegration, and long memory.
Publisher: Cambridge University Press
ISBN: 9780521796491
Category : Business & Economics
Languages : en
Pages : 400
Book Description
These are econometrician Clive W. J. Granger's major essays in causality, integration, cointegration, and long memory.
Linear Models and Time-Series Analysis
Author: Marc S. Paolella
Publisher: John Wiley & Sons
ISBN: 1119431905
Category : Mathematics
Languages : en
Pages : 896
Book Description
A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.
Publisher: John Wiley & Sons
ISBN: 1119431905
Category : Mathematics
Languages : en
Pages : 896
Book Description
A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.
Journal of Economic Literature
Author:
Publisher:
ISBN:
Category : Economics
Languages : en
Pages : 398
Book Description
Publisher:
ISBN:
Category : Economics
Languages : en
Pages : 398
Book Description
Volatility and Time Series Econometrics
Author: Tim Bollerslev
Publisher: OUP Oxford
ISBN: 0191572195
Category : Business & Economics
Languages : en
Pages : 432
Book Description
Robert Engle received the Nobel Prize for Economics in 2003 for his work in time series econometrics. This book contains 16 original research contributions by some the leading academic researchers in the fields of time series econometrics, forecasting, volatility modelling, financial econometrics and urban economics, along with historical perspectives related to field of time series econometrics more generally. Engle's Nobel Prize citation focuses on his path-breaking work on autoregressive conditional heteroskedasticity (ARCH) and the profound effect that this work has had on the field of financial econometrics. Several of the chapters focus on conditional heteroskedasticity, and develop the ideas of Engle's Nobel Prize winning work. Engle's work has had its most profound effect on the modelling of financial variables and several of the chapters use newly developed time series methods to study the behavior of financial variables. Each of the 16 chapters may be read in isolation, but they all importantly build on and relate to the seminal work by Nobel Laureate Robert F. Engle.
Publisher: OUP Oxford
ISBN: 0191572195
Category : Business & Economics
Languages : en
Pages : 432
Book Description
Robert Engle received the Nobel Prize for Economics in 2003 for his work in time series econometrics. This book contains 16 original research contributions by some the leading academic researchers in the fields of time series econometrics, forecasting, volatility modelling, financial econometrics and urban economics, along with historical perspectives related to field of time series econometrics more generally. Engle's Nobel Prize citation focuses on his path-breaking work on autoregressive conditional heteroskedasticity (ARCH) and the profound effect that this work has had on the field of financial econometrics. Several of the chapters focus on conditional heteroskedasticity, and develop the ideas of Engle's Nobel Prize winning work. Engle's work has had its most profound effect on the modelling of financial variables and several of the chapters use newly developed time series methods to study the behavior of financial variables. Each of the 16 chapters may be read in isolation, but they all importantly build on and relate to the seminal work by Nobel Laureate Robert F. Engle.
Macroeconomic Forecasting in the Era of Big Data
Author: Peter Fuleky
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716
Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716
Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.