Three Essays on Causality Approach to Modeling Long-term Economic Growth

Three Essays on Causality Approach to Modeling Long-term Economic Growth PDF Author: Piyachart Phiromswad
Publisher:
ISBN:
Category :
Languages : en
Pages : 822

Get Book Here

Book Description

Three Essays on Causality Approach to Modeling Long-term Economic Growth

Three Essays on Causality Approach to Modeling Long-term Economic Growth PDF Author: Piyachart Phiromswad
Publisher:
ISBN:
Category :
Languages : en
Pages : 822

Get Book Here

Book Description


Three Essays on Causality and Crime

Three Essays on Causality and Crime PDF Author: Bryan Lamont Sykes
Publisher:
ISBN:
Category :
Languages : en
Pages : 420

Get Book Here

Book Description


An Introduction to Causal Inference

An Introduction to Causal Inference PDF Author: Judea Pearl
Publisher: Createspace Independent Publishing Platform
ISBN: 9781507894293
Category : Causation
Languages : en
Pages : 0

Get Book Here

Book Description
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.

Proceedings of International Conference on Communication and Computational Technologies

Proceedings of International Conference on Communication and Computational Technologies PDF Author: Sandeep Kumar
Publisher: Springer Nature
ISBN: 9819934850
Category : Technology & Engineering
Languages : en
Pages : 992

Get Book Here

Book Description
This book gathers selected papers presented at 5th International Conference on Communication and Computational Technologies (ICCCT 2023), jointly organized by Soft Computing Research Society (SCRS) and Rajasthan Institute of Engineering & Technology (RIET), Jaipur, during January 28–29, 2023. The book is a collection of state-of-the art research work in the cutting-edge technologies related to the communication and intelligent systems. The topics covered are algorithms and applications of intelligent systems, informatics and applications, and communication and control systems.

Causal Inference in Statistics

Causal Inference in Statistics PDF Author: Judea Pearl
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Causal Inference in Statistics, Social, and Biomedical Sciences

Causal Inference in Statistics, Social, and Biomedical Sciences PDF Author: Guido W. Imbens
Publisher: Cambridge University Press
ISBN: 0521885884
Category : Business & Economics
Languages : en
Pages : 647

Get Book Here

Book Description
This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.

Three Essays in Applied Economics

Three Essays in Applied Economics PDF Author: Artur Minkin
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Get Book Here

Book Description


Designing Social Inquiry

Designing Social Inquiry PDF Author: Gary King
Publisher: Princeton University Press
ISBN: 0691034710
Category : Social Science
Languages : en
Pages : 259

Get Book Here

Book Description
Designing Social Inquiry focuses on improving qualitative research, where numerical measurement is either impossible or undesirable. What are the right questions to ask? How should you define and make inferences about causal effects? How can you avoid bias? How many cases do you need, and how should they be selected? What are the consequences of unavoidable problems in qualitative research, such as measurement error, incomplete information, or omitted variables? What are proper ways to estimate and report the uncertainty of your conclusions?

The Book of Why

The Book of Why PDF Author: Judea Pearl
Publisher: Basic Books
ISBN: 0465097618
Category : Computers
Languages : en
Pages : 432

Get Book Here

Book Description
A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.

Experimental and Quasi-experimental Designs for Generalized Causal Inference

Experimental and Quasi-experimental Designs for Generalized Causal Inference PDF Author: William R. Shadish
Publisher: Cengage Learning
ISBN:
Category : Education
Languages : en
Pages : 664

Get Book Here

Book Description
Sections include: experiments and generalised causal inference; statistical conclusion validity and internal validity; construct validity and external validity; quasi-experimental designs that either lack a control group or lack pretest observations on the outcome; quasi-experimental designs that use both control groups and pretests; quasi-experiments: interrupted time-series designs; regresssion discontinuity designs; randomised experiments: rationale, designs, and conditions conducive to doing them; practical problems 1: ethics, participation recruitment and random assignment; practical problems 2: treatment implementation and attrition; generalised causal inference: a grounded theory; generalised causal inference: methods for single studies; generalised causal inference: methods for multiple studies; a critical assessment of our assumptions.