Three-dimensional Simulations of Ablative Hydrodynamic Instabilities in Indirectly Driven Targets

Three-dimensional Simulations of Ablative Hydrodynamic Instabilities in Indirectly Driven Targets PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
To model ignition in a National Ignition Facility (NIF) capsule implosion, the authors must understand the behavior of instabilities that can cause breakup of the pellet shell. During a capsule implosion, shocks that transit the shell cause growth of perturbations at the surface or at an interface because of a Richtmyer-Meshkov type of instability. Following shock breakout, or earlier for a shaped pulse, the low-density ablated plasma accelerates the pusher, and the ablation front is Rayleigh-Taylor (RT) unstable. Ablation and finite density gradients have the effect of stabilizing the short wavelength modes. Unstable modes present on the outer surface grow and feed through to the inner surface. Once the shell encounters the rebounding shock from the capsule center, it decelerates and the inner surface becomes RT unstable. If perturbations grow large enough, pusher material mixes into the core, degrading implosion performance. Capsule designs for the NIF depend on ablative stabilization and saturation to prevent perturbations initially present on the capsule surface from growing large enough to quench ignition. Here, the authors examine the first simulations and experiments to study the effect of 3-D perturbation shape on instability growth and saturation in indirectly driven targets. The first section discusses HYDRA, the radiation hydrodynamics code developed for these simulations. The subsequent section examines 3-D shape effects in single-mode perturbations in planar foil simulations and experiments. A discussion of the evolution of multimode perturbations on planar foils is followed by a discussion of 3-D simulations of instability growth in Nova capsule implosions.

Three-dimensional Simulations of Ablative Hydrodynamic Instabilities in Indirectly Driven Targets

Three-dimensional Simulations of Ablative Hydrodynamic Instabilities in Indirectly Driven Targets PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
To model ignition in a National Ignition Facility (NIF) capsule implosion, the authors must understand the behavior of instabilities that can cause breakup of the pellet shell. During a capsule implosion, shocks that transit the shell cause growth of perturbations at the surface or at an interface because of a Richtmyer-Meshkov type of instability. Following shock breakout, or earlier for a shaped pulse, the low-density ablated plasma accelerates the pusher, and the ablation front is Rayleigh-Taylor (RT) unstable. Ablation and finite density gradients have the effect of stabilizing the short wavelength modes. Unstable modes present on the outer surface grow and feed through to the inner surface. Once the shell encounters the rebounding shock from the capsule center, it decelerates and the inner surface becomes RT unstable. If perturbations grow large enough, pusher material mixes into the core, degrading implosion performance. Capsule designs for the NIF depend on ablative stabilization and saturation to prevent perturbations initially present on the capsule surface from growing large enough to quench ignition. Here, the authors examine the first simulations and experiments to study the effect of 3-D perturbation shape on instability growth and saturation in indirectly driven targets. The first section discusses HYDRA, the radiation hydrodynamics code developed for these simulations. The subsequent section examines 3-D shape effects in single-mode perturbations in planar foil simulations and experiments. A discussion of the evolution of multimode perturbations on planar foils is followed by a discussion of 3-D simulations of instability growth in Nova capsule implosions.

Inertial Confinement Fusion

Inertial Confinement Fusion PDF Author: John Lindl
Publisher: American Institute of Physics
ISBN:
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
Using four-color throughout, this volume was subsidized by Lawrence Livermore Labs, where the Department of Defense funds research (within the National Ignition Faculty) into nuclear-weapons safety and fusion-energy production. Written by a chief researcher at the pre-eminent center of research in the nation, the book contains sufficient background, introductory material, and valuable information that is required reading in fusion research.

Inertial Confinement Fusion

Inertial Confinement Fusion PDF Author:
Publisher:
ISBN:
Category : Inertial confinement fusion
Languages : en
Pages : 80

Get Book Here

Book Description


Hydrodynamic Instabilities and Turbulence

Hydrodynamic Instabilities and Turbulence PDF Author: Ye Zhou
Publisher: Cambridge University Press
ISBN: 1108489648
Category : Mathematics
Languages : en
Pages : 611

Get Book Here

Book Description
The first comprehensive reference guide to turbulent mixing driven by Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instabilities.

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2540

Get Book Here

Book Description


Hydrodynamic Instabilities and the Transition to Turbulence

Hydrodynamic Instabilities and the Transition to Turbulence PDF Author: H. L. Swinney
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description


The Physics of Inertial Fusion

The Physics of Inertial Fusion PDF Author: Stefano Atzeni
Publisher: OUP Oxford
ISBN: 9780191524059
Category : Science
Languages : en
Pages : 488

Get Book Here

Book Description
This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modelling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.

Nuclear Fusion

Nuclear Fusion PDF Author:
Publisher:
ISBN:
Category : Nuclear fusion
Languages : en
Pages : 1144

Get Book Here

Book Description


Laser Interaction and Related Plasma Phenomena

Laser Interaction and Related Plasma Phenomena PDF Author: H. Hora
Publisher: Springer Science & Business Media
ISBN: 1461533244
Category : Technology & Engineering
Languages : en
Pages : 676

Get Book Here

Book Description
The Tenth International Workshop on "Laser Interaction and Related Plasma Phenomena" was held November 11-15, 1991, at the Naval Postgraduate School, Monterey, California. This conference joined physicists from 11 countries (Australia, Canada, China, France, Israel, Italy, Spain, Switzerland, united Kingdom, USA, and the USSR). This meeting was marked by the inauguration of the EDWARD TELLER MEDAL FOR ACHIEVEMENTS IN FUSION ENERGY. This medal served as a celebration of the tenth conference in the 22-year series and as an opportunity to honor one of the world's greatest physicists and a leading pioneer in this field: Edward Teller. Four medals were awarded in the inaugural ceremony. The first recipient of the medal was Nobel Laureate Nikolai G. Basov, who served for many years as Director of the LebedevPhysical Institute of the Academy of Sciences of the USSR. In his address to Edward Teller, Dr. Basov underlined that Dr. Teller was the first in history to produce an exothermal nuclear fusion reaction, the mechanism that may now lead to an inexhaustive, environmentally clean, and low cost energy source in the future. This goal, he stressed, becomes more crucial as the greenhouse effect may not permit burning of fossil fuels for much longer. Basov also reviewed events leading the International Quantum Electronics Conferences of 1963 where he disclosed the first publication on laser fusion and that of 1968 where he reported the first observation of fusion neutrons using a laser-irradiated target. The second recipient was John H.

Physics with Multiply Charged Ions

Physics with Multiply Charged Ions PDF Author: Dieter Liesen
Publisher: Springer Science & Business Media
ISBN: 1489914129
Category : Science
Languages : en
Pages : 366

Get Book Here

Book Description
Multiply charged ions have always been in the focus of atomic physics, astrophysics, plasma physics, and theoretical physics. Within the last few years, strong progress has been achieved in the development of ion sources, ion storage rings, ion traps, and methods to cool ions. As a consequence, nowadays, experiments with ensembles of multiply charged ions of brilliant quality are performed in many laboratories. The broad spectrum of the experiments demonstrates that these ions are an extremely versatile tool for investigations in pure and applied physics. It was the aim of this ASI to bring together scientists working in different fields of research with multiply charged ions in order to get an overview of the state of the art, to sound out possibilities for fruitful cooperations, and to discuss perspectives for the future. Accordingly, the programme of the ASI reached from established areas like QED calculations, weak interactions, x-ray astronomy, x-ray lasers, multi photon excitation, heavy-ion induced fusion, and ion-surface interactions up to the very recently opened areas like bound-beta decay, laser and x-ray spectroscopy, and spectrometry of ions in rings and traps, and the interaction of highly charged ions with biological cells. Impressive progress in nearly all of the fields could be reported during the meeting which is documented by the contributions to this volume. The theoretical understand ing of QED and correlation effects in few-electron heavy ions is rapidly developing.