Author: D. Iesan
Publisher: Springer Science & Business Media
ISBN: 1402023103
Category : Science
Languages : en
Pages : 309
Book Description
This volume is concerned with the basic problems of the theory of thermoelasticity for three models of continuous bodies: materials with voids, micropolar solids and nonsimple bodies. Beginning with the basic laws of thermodynamics, the theory of thermoelastic materials with voids is treated. Two subsequent chapters cover the analysis of the linear theory of micropolar thermoelastic bodies. The book concludes with a study of nonsimple thermoelastic materials, which are characterised by the inclusion of higher gradients of displacement in the basic postulates. Relevant examples and exercises which illustrate the theory are given throughout the text. The book should be of interest to mathematicians and specialists working in the fields of elasticity, thermoelasticity, civil engineering and geophysics.
Thermoelastic Models of Continua
Author: D. Iesan
Publisher: Springer Science & Business Media
ISBN: 1402023103
Category : Science
Languages : en
Pages : 309
Book Description
This volume is concerned with the basic problems of the theory of thermoelasticity for three models of continuous bodies: materials with voids, micropolar solids and nonsimple bodies. Beginning with the basic laws of thermodynamics, the theory of thermoelastic materials with voids is treated. Two subsequent chapters cover the analysis of the linear theory of micropolar thermoelastic bodies. The book concludes with a study of nonsimple thermoelastic materials, which are characterised by the inclusion of higher gradients of displacement in the basic postulates. Relevant examples and exercises which illustrate the theory are given throughout the text. The book should be of interest to mathematicians and specialists working in the fields of elasticity, thermoelasticity, civil engineering and geophysics.
Publisher: Springer Science & Business Media
ISBN: 1402023103
Category : Science
Languages : en
Pages : 309
Book Description
This volume is concerned with the basic problems of the theory of thermoelasticity for three models of continuous bodies: materials with voids, micropolar solids and nonsimple bodies. Beginning with the basic laws of thermodynamics, the theory of thermoelastic materials with voids is treated. Two subsequent chapters cover the analysis of the linear theory of micropolar thermoelastic bodies. The book concludes with a study of nonsimple thermoelastic materials, which are characterised by the inclusion of higher gradients of displacement in the basic postulates. Relevant examples and exercises which illustrate the theory are given throughout the text. The book should be of interest to mathematicians and specialists working in the fields of elasticity, thermoelasticity, civil engineering and geophysics.
Thermomechanics of Continua
Author: Krzysztof Wilmanski
Publisher: Springer Science & Business Media
ISBN: 3642589340
Category : Science
Languages : en
Pages : 284
Book Description
The notion of continuum thermodynamics, adopted in this book, is primarily understood as a strategy for development of continuous models of various physical systems. The examples of such a strategy presented in the book have both the classical character (e. g. thermoelastic materials, viscous fluids, mixtures) and the extended one (ideal gases, Maxwellian fluids, thermoviscoelastic solids etc. ). The latter has been limited intentionally to non-relativistic models; many important relativistic applications of the true extended thermodynamics will not be considered but can be found in the other sources. The notion of extended thermodynamics is also adopted in a less strict sense than suggested by the founders. For instance, in some cases we allow the constitutive dependence not only on the fields themselves but also on some derivatives. In this way, the new thermodynamical models may have some features of the usual nonequilibrium models and some of those of the extended models. This deviation from the strategy of extended thermodynamics is motivated by practical aspects; frequently the technical considerations of extended thermodynamics are so involved that one can no longer see important physical properties of the systems. This book has a different form from that usually found in books on continuum mechanics and continuum thermodynamics. The presentation of the formal structure of continuum thermodynamics is not always as rigorous as a mathematician might anticipate and the choice of physical subjects is too disperse to make a physicist happy.
Publisher: Springer Science & Business Media
ISBN: 3642589340
Category : Science
Languages : en
Pages : 284
Book Description
The notion of continuum thermodynamics, adopted in this book, is primarily understood as a strategy for development of continuous models of various physical systems. The examples of such a strategy presented in the book have both the classical character (e. g. thermoelastic materials, viscous fluids, mixtures) and the extended one (ideal gases, Maxwellian fluids, thermoviscoelastic solids etc. ). The latter has been limited intentionally to non-relativistic models; many important relativistic applications of the true extended thermodynamics will not be considered but can be found in the other sources. The notion of extended thermodynamics is also adopted in a less strict sense than suggested by the founders. For instance, in some cases we allow the constitutive dependence not only on the fields themselves but also on some derivatives. In this way, the new thermodynamical models may have some features of the usual nonequilibrium models and some of those of the extended models. This deviation from the strategy of extended thermodynamics is motivated by practical aspects; frequently the technical considerations of extended thermodynamics are so involved that one can no longer see important physical properties of the systems. This book has a different form from that usually found in books on continuum mechanics and continuum thermodynamics. The presentation of the formal structure of continuum thermodynamics is not always as rigorous as a mathematician might anticipate and the choice of physical subjects is too disperse to make a physicist happy.
Linear Theory
Author: A. Cemal Eringen
Publisher: Academic Press
ISBN: 1483276716
Category : Science
Languages : en
Pages : 676
Book Description
Elastodynamics, Volume II: Linear Theory is a continuation of Volume I and discusses the dynamical theory of linear isotropic elasticity. The volume deals with the fundamental theorems regarding elastodynamics and the different mathematical methods of solution and their employment in one, two, and three dimensions. The text outlines the fundamentals of linear elastodynamics and explains basic equations, displacement formulation, stress formulation, and the uniqueness theorem of elastodynamics. The book also investigates elastodynamic problems involving one-space dimension in governing boundaries, equations, and initial conditions. The book then compares two-dimensional problems as being subject to more precise mathematical analysis compared to three-dimensional situations by using scalar wave equations. The text then analyzes elastodynamic problems in three space dimensions when the solution depends on the condition of separability of the vector wave equation and the satisfaction of the boundary conditions. The diffraction of elastic waves is also described using two approaches: the integral equation method or the Eigen function technique. The book can prove valuable to researchers and practitioners whose work involves advanced statistics, general physics, and thermodynamics.
Publisher: Academic Press
ISBN: 1483276716
Category : Science
Languages : en
Pages : 676
Book Description
Elastodynamics, Volume II: Linear Theory is a continuation of Volume I and discusses the dynamical theory of linear isotropic elasticity. The volume deals with the fundamental theorems regarding elastodynamics and the different mathematical methods of solution and their employment in one, two, and three dimensions. The text outlines the fundamentals of linear elastodynamics and explains basic equations, displacement formulation, stress formulation, and the uniqueness theorem of elastodynamics. The book also investigates elastodynamic problems involving one-space dimension in governing boundaries, equations, and initial conditions. The book then compares two-dimensional problems as being subject to more precise mathematical analysis compared to three-dimensional situations by using scalar wave equations. The text then analyzes elastodynamic problems in three space dimensions when the solution depends on the condition of separability of the vector wave equation and the satisfaction of the boundary conditions. The diffraction of elastic waves is also described using two approaches: the integral equation method or the Eigen function technique. The book can prove valuable to researchers and practitioners whose work involves advanced statistics, general physics, and thermodynamics.
Thermoelasticity with Finite Wave Speeds
Author: Józef Ignaczak
Publisher: Oxford University Press
ISBN: 0199541647
Category : Mathematics
Languages : en
Pages : 432
Book Description
A unique monograph in a fast developing field of generalized thermoelasticity, an area of active research in continuum mechanics, focusing on thermoelasticity governed by hyperbolic equations, rather than on a wide range of continuum theories.
Publisher: Oxford University Press
ISBN: 0199541647
Category : Mathematics
Languages : en
Pages : 432
Book Description
A unique monograph in a fast developing field of generalized thermoelasticity, an area of active research in continuum mechanics, focusing on thermoelasticity governed by hyperbolic equations, rather than on a wide range of continuum theories.
Fractional Thermoelasticity
Author: Yuriy Povstenko
Publisher: Springer Nature
ISBN: 3031645871
Category :
Languages : en
Pages : 457
Book Description
Publisher: Springer Nature
ISBN: 3031645871
Category :
Languages : en
Pages : 457
Book Description
11th Chaotic Modeling and Simulation International Conference
Author: Christos H. Skiadas
Publisher: Springer
ISBN: 3030152979
Category : Science
Languages : en
Pages : 314
Book Description
Gathering the proceedings of the 11th CHAOS2018 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.
Publisher: Springer
ISBN: 3030152979
Category : Science
Languages : en
Pages : 314
Book Description
Gathering the proceedings of the 11th CHAOS2018 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.
Thermoelastic Models of Continua
Author: Dorin Iesan
Publisher: Springer
ISBN: 9789401570152
Category : Science
Languages : en
Pages : 304
Book Description
This volume is concerned with the basic problems of the theory of thermoelasticity for three models of continuous bodies: materials with voids, micropolar solids and nonsimple bodies. Beginning with the basic laws of thermodynamics, the theory of thermoelastic materials with voids is treated. Two subsequent chapters cover the analysis of the linear theory of micropolar thermoelastic bodies. The book concludes with a study of nonsimple thermoelastic materials, which are characterised by the inclusion of higher gradients of displacement in the basic postulates. Relevant examples and exercises which illustrate the theory are given throughout the text. The book should be of interest to mathematicians and specialists working in the fields of elasticity, thermoelasticity, civil engineering and geophysics.
Publisher: Springer
ISBN: 9789401570152
Category : Science
Languages : en
Pages : 304
Book Description
This volume is concerned with the basic problems of the theory of thermoelasticity for three models of continuous bodies: materials with voids, micropolar solids and nonsimple bodies. Beginning with the basic laws of thermodynamics, the theory of thermoelastic materials with voids is treated. Two subsequent chapters cover the analysis of the linear theory of micropolar thermoelastic bodies. The book concludes with a study of nonsimple thermoelastic materials, which are characterised by the inclusion of higher gradients of displacement in the basic postulates. Relevant examples and exercises which illustrate the theory are given throughout the text. The book should be of interest to mathematicians and specialists working in the fields of elasticity, thermoelasticity, civil engineering and geophysics.
Classical Continuum Mechanics
Author: Karan S. Surana
Publisher: CRC Press
ISBN: 1000512347
Category : Science
Languages : en
Pages : 829
Book Description
This book provides physical and mathematical foundation as well as complete derivation of the mathematical descriptions and constitutive theories for deformation of solid and fluent continua, both compressible and incompressible with clear distinction between Lagrangian and Eulerian descriptions as well as co- and contra-variant bases. Definitions of co- and contra-variant tensors and tensor calculus are introduced using curvilinear frame and then specialized for Cartesian frame. Both Galilean and non-Galilean coordinate transformations are presented and used in establishing objective tensors and objective rates. Convected time derivatives are derived using the conventional approach as well as non-Galilean transformation and their significance is illustrated in finite deformation of solid continua as well as in the case of fluent continua. Constitutive theories are derived using entropy inequality and representation theorem. Decomposition of total deformation for solid and fluent continua into volumetric and distortional deformation is essential in providing a sound, general and rigorous framework for deriving constitutive theories. Energy methods and the principle of virtual work are demonstrated to be a small isolated subset of the calculus of variations. Differential form of the mathematical models and calculus of variations preclude energy methods and the principle of virtual work. The material in this book is developed from fundamental concepts at very basic level with gradual progression to advanced topics. This book contains core scientific knowledge associated with mathematical concepts and theories for deforming continuous matter to prepare graduate students for fundamental and basic research in engineering and sciences. The book presents detailed and consistent derivations with clarity and is ideal for self-study.
Publisher: CRC Press
ISBN: 1000512347
Category : Science
Languages : en
Pages : 829
Book Description
This book provides physical and mathematical foundation as well as complete derivation of the mathematical descriptions and constitutive theories for deformation of solid and fluent continua, both compressible and incompressible with clear distinction between Lagrangian and Eulerian descriptions as well as co- and contra-variant bases. Definitions of co- and contra-variant tensors and tensor calculus are introduced using curvilinear frame and then specialized for Cartesian frame. Both Galilean and non-Galilean coordinate transformations are presented and used in establishing objective tensors and objective rates. Convected time derivatives are derived using the conventional approach as well as non-Galilean transformation and their significance is illustrated in finite deformation of solid continua as well as in the case of fluent continua. Constitutive theories are derived using entropy inequality and representation theorem. Decomposition of total deformation for solid and fluent continua into volumetric and distortional deformation is essential in providing a sound, general and rigorous framework for deriving constitutive theories. Energy methods and the principle of virtual work are demonstrated to be a small isolated subset of the calculus of variations. Differential form of the mathematical models and calculus of variations preclude energy methods and the principle of virtual work. The material in this book is developed from fundamental concepts at very basic level with gradual progression to advanced topics. This book contains core scientific knowledge associated with mathematical concepts and theories for deforming continuous matter to prepare graduate students for fundamental and basic research in engineering and sciences. The book presents detailed and consistent derivations with clarity and is ideal for self-study.
Higher Gradient Materials and Related Generalized Continua
Author: Holm Altenbach
Publisher: Springer Nature
ISBN: 303030406X
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This book discusses recent findings and advanced theories presented at two workshops at TU Berlin in 2017 and 2018. It underlines several advantages of generalized continuum models compared to the classical Cauchy continuum, which although widely used in engineering practice, has a number of limitations, such as: • The structural size is very small. • The microstructure is complex. • The effects are localized. As such, the development of generalized continuum models is helpful and results in a better description of the behavior of structures or materials. At the same time, there are more and more experimental studies supporting the new models because the number of material parameters is higher.
Publisher: Springer Nature
ISBN: 303030406X
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This book discusses recent findings and advanced theories presented at two workshops at TU Berlin in 2017 and 2018. It underlines several advantages of generalized continuum models compared to the classical Cauchy continuum, which although widely used in engineering practice, has a number of limitations, such as: • The structural size is very small. • The microstructure is complex. • The effects are localized. As such, the development of generalized continuum models is helpful and results in a better description of the behavior of structures or materials. At the same time, there are more and more experimental studies supporting the new models because the number of material parameters is higher.
Potential Method in Mathematical Theories of Multi-Porosity Media
Author: Merab Svanadze
Publisher: Springer Nature
ISBN: 3030280225
Category : Mathematics
Languages : en
Pages : 313
Book Description
This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics involving multi-porosity materials, including geological materials (e.g., oil, gas, and geothermal reservoirs); manufactured porous materials (e.g., ceramics and pressed powders); and biomaterials (e.g., bone and the human brain). Proceeding from basic to more advanced material, the first part of the book begins with fundamental solutions in elasticity, followed by Galerkin-type solutions and Green’s formulae in elasticity and problems of steady vibrations, quasi-static, and pseudo-oscillations for multi-porosity materials. The next part follows a similar format for thermoelasticity, concluding with a chapter on problems of heat conduction for rigid bodies. The final chapter then presents a number of open research problems to which the results presented here can be applied. All results discussed by the author have not been published previously and offer new insights into these models. Potential Method in Mathematical Theories of Multi-Porosity Media will be a valuable resource for applied mathematicians, mechanical, civil, and aerospace engineers, and researchers studying continuum mechanics. Readers should be knowledgeable in classical theories of elasticity and thermoelasticity.
Publisher: Springer Nature
ISBN: 3030280225
Category : Mathematics
Languages : en
Pages : 313
Book Description
This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics involving multi-porosity materials, including geological materials (e.g., oil, gas, and geothermal reservoirs); manufactured porous materials (e.g., ceramics and pressed powders); and biomaterials (e.g., bone and the human brain). Proceeding from basic to more advanced material, the first part of the book begins with fundamental solutions in elasticity, followed by Galerkin-type solutions and Green’s formulae in elasticity and problems of steady vibrations, quasi-static, and pseudo-oscillations for multi-porosity materials. The next part follows a similar format for thermoelasticity, concluding with a chapter on problems of heat conduction for rigid bodies. The final chapter then presents a number of open research problems to which the results presented here can be applied. All results discussed by the author have not been published previously and offer new insights into these models. Potential Method in Mathematical Theories of Multi-Porosity Media will be a valuable resource for applied mathematicians, mechanical, civil, and aerospace engineers, and researchers studying continuum mechanics. Readers should be knowledgeable in classical theories of elasticity and thermoelasticity.